1
|
Martín-Fernández C, Elguero J, Alkorta I. Beryllium as a Base: Complexes of Be(CO) 3 with HX (X=F, Cl, Br, CN, NC, CCH, OH). Chemphyschem 2024; 25:e202400608. [PMID: 38950128 DOI: 10.1002/cphc.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Beryllium chemistry is typically governed by its electron deficient character, but in some compounds it can act as a base. In order to understand better the unusual basicity of Be, we have systematically explored the complexes of one such compound, Be(CO)3, towards several hydrogen bond donors HX (X=F, Cl, Br, CN, NC, CCH, OH). For all complexes we find three different minima, two hydrogen bonded minima (to the Be or O atoms), and one weak beryllium bonded minimum. Further characterization of the interactions using a topological analysis of the electron density and Symmetry Adapted Perturbation Theory (SAPT) provide insight into the nature of these interactions. Overall these results highlight the capability of certain beryllium compounds to act as either a weak Lewis acid or, unconventionally, a Lewis base whose basicity towards hydrogen bonding is comparable to that of π systems.
Collapse
Affiliation(s)
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
2
|
Lucia-Tamudo J, López-Sánchez R, Nogueira JJ, Díaz-Tendero S. Effect of weak intermolecular interactions on the ionization of benzene derivatives dimers. J Chem Phys 2024; 161:164309. [PMID: 39450729 DOI: 10.1063/5.0226339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The interactions between π-systems in dimers of aromatic molecules lead to particularly stable conformations within the relative orientations of the monomers. Extensive research has been conducted on the properties of these complexes in the neutral state. However, in recent decades, there has been a significant surge in applications harnessing these structures for electrical purposes. Therefore, this study places particular emphasis on a deeper understanding of the redox properties of these compounds and how to modify them. To achieve this, we have focused on modeling the effect of a wide range of functional groups on the redox properties of benzene derivatives, observing a correlation between these properties and the change in the molecular dipole moment. Then, we investigated the effect of π-stacking interactions on these properties in dimers formed by either identical or different monomers. In both cases, there is an enhancement of the reducing character of the systems due to these interactions. Upon oxidation, the charge is distributed proportionally to the redox potential of each monomer. Therefore, if there is heterogeneity in these potentials, the properties of the complete cationic system will be influenced by the monomer with a greater tendency to undergo oxidation. The considered models serve as an excellent example for studying the behavior of nucleobases in DNA or aromatic amino acids, among others.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rubén López-Sánchez
- Instituto de Química Física "Blas Cabrera," Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Sánchez-Sanz G, Alkorta I, Elguero J. Low Valence Triel (I) Systems as Hydrogen Bond Acceptors and their Stability with Respect to Triel (III) Compounds. Chemphyschem 2024; 25:e202400308. [PMID: 38963877 DOI: 10.1002/cphc.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024]
Abstract
A theoretical study of the complexes formed by carbene like Al(I), Ga(I), In(I) and Tl(I) compounds with hydrogen bond donors (HBD), XH (HCCH, HSH,HOH, HCN, HCl, HBr, HF, and HNC) have been carried out at MP2 computational level. The isolated triel(I) compounds show a negative region of the molecular electrostatic potential region associated with the triel atom suitable to interact with electron deficient groups. This region is associated to a lone pair based on the ELF analysis and to the location of the HOMO orbital. The complexes are similar to those found in nitrogen heterocyclic carbenes (NHC) with HBD. In addition, the oxidative addition reactions of those complexes to yield the corresponding valence III compounds have been characterized. The Al(III) compounds are much more stable than the corresponding Al(I) complexes. However, the stability of the triel(III) compounds decreases with the size of the triel atom and for the thallium derivatives, the Tl(I) complexes are more stable than the Tl(III) compounds in accordance with the number of the structures found in the CSD. The barrier of the TS connecting the triel(I) and triel(III) systems increases with the size of the triel atoms.
Collapse
Affiliation(s)
- Goar Sánchez-Sanz
- Research IT, Kilburn Building, The University of Manchester, Oxford Rd, M13 9PL, Manchester, UK
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| |
Collapse
|
4
|
Scheiner S. Anions as Lewis Acids in Noncovalent Bonds. Chemistry 2024; 30:e202402267. [PMID: 38975959 DOI: 10.1002/chem.202402267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
The ability of an anion to serve as electron-accepting Lewis acid in a noncovalent bond is assessed via DFT calculations. NH3 is taken as the common base, and is paired with a host of ACln - anions, with central atom A=Ca, Sr, Mg, Te, Sb, Hg, Zn, Ag, Ga, Ti, Sn, I, and B. Each anion reacts through its σ or π-hole although the electrostatic potential of this hole is quite negative in most cases. Despite the contact between this negative hole and the negative region of the approaching nucleophile, the electrostatic component of the interaction energy of each bond is highly favorable, and accounts for more than half of the total attractive energy. The double negative charge of dianions precludes a stable complex with NH3.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| |
Collapse
|
5
|
Abicho S, Hailegnaw B, Mayr F, Cobet M, Yumusak C, Lelisho TA, Yohannes T, Kaltenbrunner M, Sariciftci NS, Scharber MC, Workneh GA. 3-Thiophenemalonic Acid Additive Enhanced Performance in Perovskite Solar Cells. ACS OMEGA 2024; 9:2674-2686. [PMID: 38250358 PMCID: PMC10795048 DOI: 10.1021/acsomega.3c07592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
The development of ambient-air-processable organic-inorganic halide perovskite solar cells (OIHPSCs) is a challenge necessary for the transfer of laboratory-scale technology to large-scale and low-cost manufacturing of such devices. Different approaches like additives, antisolvents, composition engineering, and different deposition techniques have been employed to improve the morphology of the perovskite films. Additives that can form Lewis acid-base adducts are known to minimize extrinsic impacts that trigger defects in ambient air. In this work, we used the 3-thiophenemalonic acid (3-TMA) additive, which possesses thiol and carboxyl functional groups, to convert PbI2, PbCl2, and CH3NH3I to CH3NH3PbI3 completely. This strategy is effective in regulating the kinetics of crystallization and improving the crystallinity of the light-absorbing layer under high relative humidity (RH) conditions (30-50%). As a result, the 3-TMA additive increases the yield of the power conversion efficiency (PCE) from 14.9 to 16.5% and its stability under the maximum power point. Finally, we found that the results of this work are highly relevant and provide additional inputs to the ongoing research progress related to additive engineering as one of the efficient strategies to reduce parasitic recombination and enhance the stability of inverted OIHPSCs in ambient environment processing.
Collapse
Affiliation(s)
- Samuel Abicho
- Department
of Industrial Chemistry, Addis Ababa Science
and Technology University, P.O. Box 16417 Addis Ababa, Ethiopia
- Sustainable
Energy Center of Excellence, Addis Ababa
Science and Technology University, P.O.
Box 16417 Addis Ababa, Ethiopia
- Linz
Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University, Linz, Altenberger Str. 69, 4040 Linz, Austria
- Department
of Chemistry, Hawassa University, P.O. Box 05 Hawassa, Ethiopia
| | - Bekele Hailegnaw
- Division
of Soft Matter Physics and LIT Soft Materials Lab, Johannes Kepler University, Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Felix Mayr
- Linz
Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University, Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Munise Cobet
- Linz
Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University, Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Cigdem Yumusak
- Linz
Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University, Linz, Altenberger Str. 69, 4040 Linz, Austria
| | | | - Teketel Yohannes
- Department
of Chemistry, Addis Ababa University, P.O. Box 1176 Addis
Ababa, Ethiopia
| | - Martin Kaltenbrunner
- Division
of Soft Matter Physics and LIT Soft Materials Lab, Johannes Kepler University, Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Niyazi Serdar Sariciftci
- Linz
Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University, Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Markus Clark Scharber
- Linz
Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University, Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Getachew Adam Workneh
- Department
of Industrial Chemistry, Addis Ababa Science
and Technology University, P.O. Box 16417 Addis Ababa, Ethiopia
- Sustainable
Energy Center of Excellence, Addis Ababa
Science and Technology University, P.O.
Box 16417 Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Pérez-Gutiérrez E, Ahsin A, El Bakri Y, Venkatesan P, Thamotharan S, Percino MJ. Color properties and non-covalent interactions in hydrated (Z)-4-(1-cyano-2-(2,4,5-trimethoxyphenyl)-vinyl)pyridin-1-ium chloride salt: Insights from experimental and theoretical studies. Heliyon 2023; 9:e21040. [PMID: 37954267 PMCID: PMC10637909 DOI: 10.1016/j.heliyon.2023.e21040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
The optical charge-transfer (CT) property and the crystal structure of (Z)-4-(1-cyano-2-(2,4,5-trimethoxyphenyl)vinyl)pyridin-1-ium chloride monohydrate salt (I), which belongs to an acrylonitrile family, was studied. The title salt, I, was characterized using different spectroscopy techniques and a single-crystal X-ray diffraction study combined with quantum chemical computations. The results showed that the color properties of I are determined by the CT, changes in bandgap, optical absorption, and various non-covalent interactions. The HOMO-LUMO energy gaps are 5.41 eV and 5.23 eV for the precursor and salt, respectively. It was demonstrated that π-π stacking interactions lead to the formation of intercalated dimers and donor-acceptor interactions assisted by hydrogen bonds; the dimers and interactions are different between the precursor and the salt. The cation moiety is mainly stabilized by N(1)+-H···Cl, and the anion is predominantly stabilized by strong O(1W)- H⋯ Cl- bonds as well as the hydrogen bonds with the MeO group O(2W)-H⋯O(1) and O(2W)-H⋯O(1W). The charge transfer between cation and anion moieties in the structure is established through NBO analysis.
Collapse
Affiliation(s)
- Enrique Pérez-Gutiérrez
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3, Eco-campus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Pue. Mexico
| | - Atazaz Ahsin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of chemical sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation
| | - Perumal Venkatesan
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3, Eco-campus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Pue. Mexico
- Department of Chemistry, Srimad Andavan Arts and Science College (Autonomous), T.V. Koil, Tiruchirappalli 620 005, India
| | - S. Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - M. Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3, Eco-campus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Pue. Mexico
| |
Collapse
|
7
|
Martín-Fernández C, Ferrer M, Alkorta I, Montero-Campillo MM, Elguero J, Mandado M. Metastable Charged Dimers in Organometallic Species: A Look into Hydrogen Bonding between Metallocene Derivatives. Inorg Chem 2023; 62:16523-16537. [PMID: 37755334 DOI: 10.1021/acs.inorgchem.3c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Multiply charged complexes bound by noncovalent interactions have been previously described in the literature, although they were mostly focused on organic and main group inorganic systems. In this work, we show that similar complexes can also be found for organometallic systems containing transition metals and deepen in the reasons behind the existence of these species. We have studied the structures, binding energies, and dissociation profiles in the gas phase of a series of charged hydrogen-bonded dimers of metallocene (Ru, Co, Rh, and Mn) derivatives isoelectronic with the ferrocene dimer. Our results indicate that the carboxylic acid-containing dimers are more strongly bonded and present larger barriers to dissociation than the amide ones and that the cationic complexes tend to be more stable than the anionic ones. Additionally, we describe for the first time the symmetric proton transfer that can occur while in the metastable phase. Finally, we use a density-based energy decomposition analysis to shine light on the nature of the interaction between the dimers.
Collapse
Affiliation(s)
| | - Maxime Ferrer
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- PhD Programme in Theoretical Chemistry and Computational Modelling, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - M Merced Montero-Campillo
- Departamento de Química (Módulo 13, Facultad de Ciencias), Campus de Excelencia UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Marcos Mandado
- Departamento de Química Física, Universidade de Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
8
|
Shukla R, Yu D, Mu T, Kozuch S. Yet another perspective on hole interactions, part II: lp-hole vs. lp-hole interactions. Phys Chem Chem Phys 2023; 25:12641-12649. [PMID: 36847568 DOI: 10.1039/d3cp00225j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Most of the experimental and theoretical work in hole interactions (HIs) is mainly focused on exploiting the nature and characteristics of σ and π-holes. In this perspective, we focus our attention on understanding the origin and properties of lone-pair holes. These holes are present on an atom opposite to its lone-pair region. Utilizing some new and old examples, such as X3N/P⋯F- (X = F/Cl/Br/I), F-Cl/Br/I⋯H3P⋯NCH and H3B-NBr3 along with other molecular systems, we explored to what extent these lp-holes participate in lp-hole interactions, if they participate at all.
Collapse
Affiliation(s)
- Rahul Shukla
- NCI Laboratory, Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, A.P., India.
| | - Dongkun Yu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| |
Collapse
|
9
|
Reactivity of a model of B 3P 3-doped nanographene with up to three CO 2 molecules. Sci Rep 2023; 13:2407. [PMID: 36765069 PMCID: PMC9918725 DOI: 10.1038/s41598-023-29336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The reactivity of a B3P3-doped hexa-cata-hexabenzocoronene, as a model of nanographene (B3P3-NG), towards carbon dioxide was studied at the DFT M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G* level of theory. This compound can be classified as a poly-cyclic poly-Frustrated Lewis Pair (FLP) system, as it presents more than one Lewis Acid/Lewis Base pair on its surface, making the capture of several carbon dioxide molecules possible. Two scenarios were considered to fully characterize the capture of CO2 by this multi-FLP system: (i) fixation of three CO2 molecules sequentially one by one; and (ii) simultaneous contact of three CO2 molecules with the B3P3-NG surface. The resulting adducts were analyzed as function of activation barriers and the relative stability of the CO2 capture. A cooperativity effect due to the π-delocalization of the hexa-cata-hexabenzocoronene is observed. The fixation of a CO2 molecule modifies the electronic properties. It enhances the capture of additional CO2 molecules by changing the acidy and basicity of the rest of the boron and phosphorus atoms in the B3P3-NG system.
Collapse
|
10
|
Garcia MR, Iribarren I, Rozas I, Trujillo C. Simultaneous Hydrogen Bonds with Different Binding Modes: The Acceptor "Rules" but the Donor "Chooses". Chemistry 2023; 29:e202203577. [PMID: 36701250 DOI: 10.1002/chem.202203577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
This computational work studies the different hydrogen bond (HB) binding modes that can be established between neighbouring HB donors and acceptors in structures with relevance in catalysis and biology. To analyse the electronic effect on the σ-hole, unsubstituted HB donors and ones with two different substituents, an electron withdrawing (EWG), and an electron donating (EDG) group, were studied. Upon complexation, three different binding modes were observed: bifurcated, parallel, and zigzag. It was found that, as a general trend, HBs within a parallel pattern are the strongest followed by those within bifurcated and zigzag binding modes, leading to a "competition" between the last two. Similar patterns and trends have been found in experimental structures found in a search within the CSD. In conclusion, even though the HB acceptors "rule" the pattern and strength of the HB interactions within the dimers, when there is an option for different binding modes within a particular dimer, the HB donors "choose" the type of binding established.
Collapse
Affiliation(s)
- Marianne Rica Garcia
- School of Chemistry, Trinity College Dublin, The University of Dublin, 154-160 Pearse Street, D02 R590, Dublin, Ireland
| | - Iñigo Iribarren
- School of Chemistry, Trinity College Dublin, The University of Dublin, 154-160 Pearse Street, D02 R590, Dublin, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, The University of Dublin, 154-160 Pearse Street, D02 R590, Dublin, Ireland
| | - Cristina Trujillo
- School of Chemistry, Trinity College Dublin, The University of Dublin, 154-160 Pearse Street, D02 R590, Dublin, Ireland.,Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| |
Collapse
|
11
|
Oliveira BGD. Why much of Chemistry may be indisputably non-bonded? SEMINA: CIÊNCIAS EXATAS E TECNOLÓGICAS 2023. [DOI: 10.5433/1679-0375.2022v43n2p211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this compendium, the wide scope of all intermolecular interactions ever known has been revisited, in particular giving emphasis the capability of much of the elements of the periodic table to form non-covalent contacts. Either hydrogen bonds, dihydrogen bonds, halogen bonds, pnictogen bonds, chalcogen bonds, triel bonds, tetrel bonds, regium bonds, spodium bonds or even the aerogen bond interactions may be cited. Obviously that experimental techniques have been used in some works, but it was through the theoretical methods that these interactions were validate, wherein the QTAIM integrations and SAPT energy partitions have been useful in this regard. Therefore, the great goal concerns to elucidate the interaction strength and if the intermolecular system shall be total, partial or non-covalently bonded, wherein this last one encompasses the most majority of the intermolecular interactions what leading to affirm that chemistry is debatably non-bonded.
Collapse
|
12
|
Blahman A, Kozuch S. Inverse Bonding – Backbonding: Metal to Ligand σ and Ligand to Metal π Dative Interactions between Bismuth and Boron. Isr J Chem 2022. [DOI: 10.1002/ijch.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Alex Blahman
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| | - Sebastian Kozuch
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| |
Collapse
|
13
|
Montero-Campillo MM, Mó O, Alkorta I, Elguero J, Yáñez M. Disrupting bonding in azoles through beryllium bonds: Unexpected coordination patterns and acidity enhancement. J Chem Phys 2022; 156:194303. [PMID: 35597641 DOI: 10.1063/5.0089716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although triazoles and tetrazole are amphoteric and may behave as weak acids, the latter property can be hugely enhanced by beryllium bonds. To explain this phenomenon, the structure and bonding characteristics of the complexes between triazoles and tetrazoles with one and two molecules of BeF2 have been investigated through the use of high-level G4 ab initio calculations. The formation of the complexes between the N basic sites of the azoles and the Be center of the BeF2 molecule and the (BeF2)2 dimer leads to a significant bonding perturbation of both interacting subunits. The main consequence of these electron density rearrangements is the above-mentioned increase in the intrinsic acidity of the azole subunit, evolving from a typical nitrogen base to a very strong nitrogenous acid. This effect is particularly dramatic when the interaction involves the (BeF2)2 dimer, that is, a Lewis acid much stronger than the monomer. Although the azoles investigated have neighboring N-basic sites, their interaction with the (BeF2)2 dimer yields a monodentate complex. However, the deprotonated species becomes extra-stabilized because a second N-Be bond is formed, leading to a new five-membered ring, with the result that the azole-(BeF2)2 complexes investigated become stronger nitrogenous acids than oxyacids such as perchloric acid.
Collapse
Affiliation(s)
- M Merced Montero-Campillo
- Departamento de Química, Módulo 13, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Otilia Mó
- Departamento de Química, Módulo 13, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Manuel Yáñez
- Departamento de Química, Módulo 13, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
14
|
Malonaldehyde-like Systems: BeF2 Clusters—A Subtle Balance between Hydrogen Bonds, Beryllium Bonds, and Resonance. SCI 2022. [DOI: 10.3390/sci4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The stability of malonaldehyde is governed by intramolecular hydrogen bonds (IMHBs) as well as in malonaldehyde-like systems where oxygen is replaced by N or S at any of the basic sites. As beryllium bonds have been shown to strongly cooperate with hydrogen bonds, this work explores at the high level ab initio G4 level of theory the effect of including this non-covalent interaction in the system through its association with BeF2. Although malonaldehyde follows the expected trends, where the formation of a pseudocyclic form is favored also when IMHB and Be bonds are present, the subtle balance between both non-covalent interactions leads to some surprising results when other heteroatoms are involved, to the point that interaction energies can be much larger than expected or even cyclization is not favored. A complete analysis using different computational tools gives an answer to those cases escaping the predictable trends.
Collapse
|
15
|
Clustering of Electron Deficient B‐ and Be‐Containing Analogues: In the Fight for Tetracoordination, Beryllium Takes the Lead. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Tarannam N, Shukla R, Kozuch S. Yet another perspective on hole interactions. Phys Chem Chem Phys 2021; 23:19948-19963. [PMID: 34514473 DOI: 10.1039/d1cp03533a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hole interactions are known by different names depending on the key atom of the bond (halogen bond, chalcogen bond, hydrogen bond, etc.), and the geometry of the interaction (σ if in line, π if perpendicular to the Lewis acid plane). However, its origin starts with the creation of a Lewis acid by an underlying covalent bond, which forms an electrostatic depletion and a virtual antibonding orbital, which can create non-covalent interactions with Lewis bases. In this (maybe subjective) perspective, we will claim that hole interactions must be defined via the molecular orbital origin of the molecule. Under this premise we can better explore the richness of such bonding patterns. For that, we will study old, recent and new systems, trying to pinpoint some misinterpretations that are often associated with them. We will use as exemplars the triel bonds, a couple of metal complexes, a discussion on convergent σ-holes, and many cases of anti-electrostatic hole interactions.
Collapse
Affiliation(s)
- Naziha Tarannam
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| | - Rahul Shukla
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| |
Collapse
|