1
|
Mendolicchio M, Barone V. Unbiased Comparison between Theoretical and Experimental Molecular Structures and Properties: Toward an Accurate Reduced-Cost Evaluation of Vibrational Contributions. J Chem Theory Comput 2024; 20:2842-2857. [PMID: 38556752 DOI: 10.1021/acs.jctc.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The tremendous development of hardware and software is constantly increasing the role of quantum chemical (QC) computations in the assignment and interpretation of experimental results. However, an unbiased comparison between theory and experiment requires the proper account of vibrational averaging effects. In particular, high-resolution spectra in the gas phase are now available for molecules containing up to about 50 atoms, which are too large for a brute-force approach with the available QC methods of sufficient accuracy. In the present paper, we introduce hybrid approaches, which allow the accurate evaluation of vibrational averaging effects for molecules of this size beyond the harmonic approximation, with special attention being devoted to rotational constants. After the validation of new tools for relatively small molecules, the β-estradiol hormone and a prototypical molecular motor have been considered to witness the feasibility of accurate computations for large molecules.
Collapse
|
2
|
Lazzari F, Mendolicchio M, Barone V. Accurate Geometries of Large Molecules by Integration of the Pisa Composite Scheme and the Templating Synthon Approach. J Phys Chem A 2024; 128:1385-1395. [PMID: 38347709 DOI: 10.1021/acs.jpca.3c08382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
An effective yet reliable computational workflow is proposed, which permits the computation of accurate geometrical structures for large flexible molecules at an affordable cost thanks to the integration of machine learning tools and DFT models together with reduced scaling computations of vibrational averaging effects. After validation of the different components of the overall strategy, a panel of molecules of biological interest have been analyzed. The results confirm that very accurate geometrical parameters can be obtained at reasonable cost for molecules including up to about 50 atoms, which are the largest ones for which comparison with high-resolution rotational spectra is possible. Since the whole computational workflow can be followed employing standard electronic structure codes, accurate results for large-sized molecules can be obtained at DFT cost also by nonspecialists.
Collapse
Affiliation(s)
- Federico Lazzari
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Mendolicchio
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | |
Collapse
|
3
|
Barone V. Quantum chemistry meets high-resolution spectroscopy for characterizing the molecular bricks of life in the gas-phase. Phys Chem Chem Phys 2024; 26:5802-5821. [PMID: 38099409 DOI: 10.1039/d3cp05169b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Computation of accurate geometrical structures and spectroscopic properties of large flexible molecules in the gas-phase is tackled at an affordable cost using a general exploration/exploitation strategy. The most distinctive feature of the approach is the careful selection of different quantum chemical models for energies, geometries and vibrational frequencies with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, a composite wave-function method is used for energies, whereas a double-hybrid functional (with the addition of core-valence correlation) is employed for geometries and harmonic frequencies and a cheaper hybrid functional for anharmonic contributions. A thorough benchmark based on a wide range of prototypical molecular bricks of life shows that the proposed strategy is close to the accuracy of state-of-the-art composite wave-function methods, and is applicable to much larger systems. A freely available web-utility post-processes the geometries optimized by standard electronic structure codes paving the way toward the accurate yet not prohibitively expensive study of medium- to large-sized molecules by experimentally-oriented researchers.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
4
|
Barone V, Lazzari F. Hunting for Complex Organic Molecules in the Interstellar Medium: The Role of Accurate Low-Cost Theoretical Geometries and Rotational Constants. J Phys Chem A 2023; 127:10517-10527. [PMID: 38033327 PMCID: PMC10726368 DOI: 10.1021/acs.jpca.3c06649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
A new approach to computation at affordable cost of accurate geometrical structures and rotational constants for medium-sized molecules in the gas phase is further improved and applied to a large panel of interstellar complex organic molecules. The most distinctive feature of the new model is the effective inclusion of core-valence correlation and vibrational averaging effects in the framework of density functional theory (DFT). In particular, a double-hybrid functional in conjunction with a quadruple-ζ valence/triple-ζ polarization basis set is employed for geometry optimizations, whereas a cheaper hybrid functional in conjunction with a split-valence basis set is used for the evaluation of vibrational corrections. A thorough benchmark based on a wide range of prototypical systems shows that the new scheme approaches the accuracy of state-of-the-art wave function methods with the computational cost of the standard methods (DFT or MP2) routinely employed in the interpretation of microwave spectra. Since the whole computational workflow involves the postprocessing of the output of standard electronic structure codes by a new freely available web utility, the way is paved for the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by nonspecialists.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, di Pisa, Piazza dei Cavalieri 7, Pisa 56125, Italy
| | - Federico Lazzari
- Scuola Normale Superiore, di Pisa, Piazza dei Cavalieri 7, Pisa 56125, Italy
| |
Collapse
|
5
|
Melosso M, Alessandrini S, Spada L, Melli A, Wang X, Zheng Y, Duan C, Li J, Du W, Gou Q, Bizzocchi L, Dore L, Barone V, Puzzarini C. Rotational spectra and semi-experimental structures of furonitrile and its water cluster. Phys Chem Chem Phys 2023; 25:31281-31291. [PMID: 37955344 DOI: 10.1039/d3cp03984f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Rotational spectroscopy represents an invaluable tool for several applications: from the identification of new molecules in interstellar objects to the characterization of van der Waals complexes, but also for the determination of very accurate molecular structures and for conformational analyses. In this work, we used high-resolution rotational spectroscopic techniques in combination with high-level quantum-chemical calculations to address all these aspects for two isomers of cyanofuran, namely 2-furonitrile and 3-furonitrile. In particular, we have recorded and analyzed the rotational spectra of both of them from 6 to 320 GHz; rotational transitions belonging to several singly-substituted isotopologues have been identified as well. The rotational constants derived in this way have been used in conjunction with computed rotation-vibration interaction constants in order to derive a semi-experimental equilibrium structure for both isomers. Moreover, we observed the rotational spectra of four different intermolecular adducts formed by furonitrile and water, whose identification has been supported by a conformational analysis and a theoretical spectroscopic characterization. A semi-experimental determination of the intermolecular parameters has been achieved for all of them and the results have been compared with those obtained for the analogous system formed by benzonitrile and water.
Collapse
Affiliation(s)
- Mattia Melosso
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Silvia Alessandrini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Lorenzo Spada
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Alessio Melli
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Xiujuan Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Chunguo Duan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Jiayi Li
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Weiping Du
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Luca Bizzocchi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Luca Dore
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
6
|
Di Grande S, Kállay M, Barone V. Accurate thermochemistry at affordable cost by means of an improved version of the JunChS-F12 model chemistry. J Comput Chem 2023; 44:2149-2157. [PMID: 37432050 DOI: 10.1002/jcc.27187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
The junChS-F12 composite method has been improved by means of the latest implementation of the CCSD(F12*)(T+) ansatz and validated for the thermochemistry of molecules containing atoms of the first three rows of the periodic table. A thorough benchmark showed that this model, in conjunction with cost-effective revDSD-PBEP86-D3(BJ) reference geometries, offers an optimal compromise between accuracy and computational cost. If improved geometries are sought, the most effective option is to add MP2-F12 core-valence correlation corrections to CCSD(T)-F12b/jun-cc-pVTZ geometries without the need of performing any extrapolation to the complete basis set limit. In the same vein, CCSD(T)-F12b/jun-cc-pVTZ harmonic frequencies are remarkably accurate without any additional contribution. Pilot applications to noncovalent intermolecular interactions, conformational landscapes, and tautomeric equilibria confirm the effectiveness and reliability of the model.
Collapse
Affiliation(s)
- S Di Grande
- Classe di Scienze, Scuola Normale Superiore di Pisa, Pisa, Italy
- Scuola Superiore Meridionale, Napoli, Italy
| | - M Kállay
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Budapest, Hungary
| | - V Barone
- Classe di Scienze, Scuola Normale Superiore di Pisa, Pisa, Italy
| |
Collapse
|
7
|
Gougoula E, Cummings CN, Medcraft C, Heitkämper J, Walker NR. Microwave spectra, molecular geometries, and internal rotation of CH 3 in N-methylimidazole⋯H 2O and 2-methylimidazole⋯H 2O Complexes. Phys Chem Chem Phys 2022; 24:12354-12362. [PMID: 35551286 PMCID: PMC9131724 DOI: 10.1039/d1cp05526g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broadband microwave spectra have been recorded between 7.0 and 18.5 GHz for N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O complexes. Each complex was generated by co-expansion of low concentrations of methylimidazole and H2O in argon buffer gas. The rotational spectra of five isotopologues of each complex have been assigned and analysed to determine rotational constants (A0, B0, C0), centrifugal distortion constants (DJ, DJK) and parameters that describe the internal rotation of the CH3 group. The results allow the determination of parameters in the (r0) molecular geometry of each complex. H2O is the hydrogen bond donor and the pyridinic nitrogen of imidazole is the hydrogen bond acceptor in each case. The ∠(O–Hb⋯N3) angles are 177(5)° and 166.3(28)° for N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O respectively. These results are consistent with the presence of a weak electrostatic interaction between the oxygen atom of H2O and the hydrogen atom (or CH3 group) attached to the C2 carbon atom of imidazole, and with the results of density functional theory calculations. The (V3) barrier to internal rotation of the CH3 group within N-methylimidazole⋯H2O is essentially unchanged from the value of this parameter for the N-methylimidazole monomer. The same parameter is significantly higher for the 2-methylimidazole⋯H2O complex than for the 2-methylimidazole monomer as a consequence of the weak electrostatic interaction between the O atom and the CH3 group of 2-methylimidazole. Broadband microwave spectra have been recorded between 7.0 and 18.5 GHz for N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O complexes.![]()
Collapse
Affiliation(s)
- Eva Gougoula
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Charlotte N Cummings
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne, NE1 7RU, UK.
| | - Chris Medcraft
- School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Juliane Heitkämper
- Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Nicholas R Walker
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
8
|
Melli A, Melosso M, Lengsfeld KG, Bizzocchi L, Rivilla VM, Dore L, Barone V, Grabow JU, Puzzarini C. Spectroscopic Characterization of 3-Aminoisoxazole, a Prebiotic Precursor of Ribonucleotides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103278. [PMID: 35630755 PMCID: PMC9147597 DOI: 10.3390/molecules27103278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
The processes and reactions that led to the formation of the first biomolecules on Earth play a key role in the highly debated theme of the origin of life. Whether the first chemical building blocks were generated on Earth (endogenous synthesis) or brought from space (exogenous delivery) is still unanswered. The detection of complex organic molecules in the interstellar medium provides valuable support to the latter hypothesis. To gather more insight, here we provide the astronomers with accurate rotational frequencies to guide the interstellar search of 3-aminoisoxazole, which has been recently envisaged as a key reactive species in the scenario of the so-called RNA-world hypothesis. Relying on an accurate computational characterization, we were able to register and analyze the rotational spectrum of 3-aminoisoxazole in the 6–24 GHz and 80–320 GHz frequency ranges for the first time, exploiting a Fourier-transform microwave spectrometer and a frequency-modulated millimeter/sub-millimeter spectrometer, respectively. Due to the inversion motion of the −NH2 group, two states arise, and both of them were characterized, with more than 1300 lines being assigned. Although the fit statistics were affected by an evident Coriolis interaction, we were able to produce accurate line catalogs for astronomical observations of 3-aminoisoxazole.
Collapse
Affiliation(s)
- Alessio Melli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; (A.M.); (V.B.)
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (L.B.); (L.D.)
| | - Mattia Melosso
- Scuola Superiore Meridionale, Università di Napoli Federico II, Largo San Marcellino 10, 80138 Naples, Italy
- Correspondence: (M.M.); (C.P.)
| | - Kevin G. Lengsfeld
- Institut für Physikalische Chemie und Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany; (K.G.L.); (J.-U.G.)
| | - Luca Bizzocchi
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (L.B.); (L.D.)
| | - Víctor M. Rivilla
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Luca Dore
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (L.B.); (L.D.)
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; (A.M.); (V.B.)
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie und Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany; (K.G.L.); (J.-U.G.)
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (L.B.); (L.D.)
- Correspondence: (M.M.); (C.P.)
| |
Collapse
|
9
|
Li X, Spada L, Alessandrini S, Zheng Y, Lengsfeld KG, Grabow J, Feng G, Puzzarini C, Barone V. Stacked but not Stuck: Unveiling the Role of π→π* Interactions with the Help of the Benzofuran-Formaldehyde Complex. Angew Chem Int Ed Engl 2022; 61:e202113737. [PMID: 34697878 PMCID: PMC9298890 DOI: 10.1002/anie.202113737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/14/2022]
Abstract
The 1:1 benzofuran-formaldehyde complex has been chosen as model system for analyzing π→π* interactions in supramolecular organizations involving heteroaromatic rings and carbonyl groups. A joint "rotational spectroscopy-quantum chemistry" strategy unveiled the dominant role of π→π* interactions in tuning the intermolecular interactions of such adduct. The exploration of the intermolecular potential energy surface led to the identification of 14 low-energy minima, with 4 stacked isomers being more stable than those linked by hydrogen bond or lone-pair→π interactions. All energy minima are separated by loose transition states, thus suggesting an effective relaxation to the global minimum under the experimental conditions. This expectation has been confirmed by the experimental detection of only one species, which was unambiguously assigned owing to the computation of accurate spectroscopic parameters and the characterization of 11 isotopologues. The large number of isotopic species opened the way to the determination of the first semi-experimental equilibrium structure for a molecular complex of such a dimension.
Collapse
Affiliation(s)
- Xiaolong Li
- School of Chemistry and Chemical EngineeringChongqing UniversityDaxuecheng South Rd. 55Chongqing401331China
| | - Lorenzo Spada
- Scuola Normale SuperiorePiazza dei Cavalieri 756126PisaItaly
| | - Silvia Alessandrini
- Scuola Normale SuperiorePiazza dei Cavalieri 756126PisaItaly
- Dipartimento di Chimica “Giacomo Ciamician”University of BolognaVia F. Selmi 240126BolognaItaly
| | - Yang Zheng
- School of Chemistry and Chemical EngineeringChongqing UniversityDaxuecheng South Rd. 55Chongqing401331China
| | - Kevin Gregor Lengsfeld
- Institut für Physikalische Chemie and ElektrochemieGottfried Wilhelm Leibniz Universität HannoverCallinstrasse 3A30167HannoverGermany
| | - Jens‐Uwe Grabow
- Institut für Physikalische Chemie and ElektrochemieGottfried Wilhelm Leibniz Universität HannoverCallinstrasse 3A30167HannoverGermany
| | - Gang Feng
- School of Chemistry and Chemical EngineeringChongqing UniversityDaxuecheng South Rd. 55Chongqing401331China
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”University of BolognaVia F. Selmi 240126BolognaItaly
| | - Vincenzo Barone
- Scuola Normale SuperiorePiazza dei Cavalieri 756126PisaItaly
| |
Collapse
|
10
|
Li X, Spada L, Alessandrini S, Zheng Y, Lengsfeld KG, Grabow J, Feng G, Puzzarini C, Barone V. Gestapelt, nicht geklebt: Enthüllung der π→π*‐Wechselwirkung mithilfe des Benzofuran‐Formaldehyd‐Komplexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaolong Li
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 Chongqing 401331 China
| | - Lorenzo Spada
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italien
| | - Silvia Alessandrini
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italien
- Dipartimento di Chimica “Giacomo Ciamician” Università di Bologna Via F. Selmi 2 40126 Bologna Italien
| | - Yang Zheng
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 Chongqing 401331 China
| | - Kevin Gregor Lengsfeld
- Institut für Physikalische Chemie und Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Deutschland
| | - Jens‐Uwe Grabow
- Institut für Physikalische Chemie und Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Deutschland
| | - Gang Feng
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 Chongqing 401331 China
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician” Università di Bologna Via F. Selmi 2 40126 Bologna Italien
| | - Vincenzo Barone
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italien
| |
Collapse
|
11
|
Barone V, Lupi J, Salta Z, Tasinato N. Development and Validation of a Parameter-Free Model Chemistry for the Computation of Reliable Reaction Rates. J Chem Theory Comput 2021; 17:4913-4928. [PMID: 34228935 PMCID: PMC8359010 DOI: 10.1021/acs.jctc.1c00406] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
A recently developed
model chemistry (jun-Cheap) has been slightly
modified and proposed as an effective, reliable, and parameter-free
scheme for the computation of accurate reaction rates with special
reference to astrochemical and atmospheric processes. Benchmarks with
different sets of state-of-the-art energy barriers spanning a wide
range of values show that, in the absence of strong multireference
contributions, the proposed model outperforms the most well-known
model chemistries, reaching a subchemical accuracy without any empirical
parameter and with affordable computer times. Some test cases show
that geometries, energy barriers, zero point energies, and thermal
contributions computed at this level can be used in the framework
of the master equation approach based on the ab initio transition-state
theory for obtaining accurate reaction rates.
Collapse
Affiliation(s)
- Vincenzo Barone
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Jacopo Lupi
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Zoi Salta
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Nicola Tasinato
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56125 Pisa, Italy
| |
Collapse
|