1
|
Abstract
Robust organic triradicals with high-spin quartet ground states provide promising applications in molecular magnets, spintronics, etc. In this context, a triradical based on Blatter's radical has been synthesized recently, having two low-lying non-degenerate doublet states with a quartet ground state. The traditional broken-symmetry (BS)-DFT computed doublet-quartet energy gaps are reported to be somewhat overestimated in comparison to the experimentally observed values. In this work, we have employed different ab initio methods on this prototypical system to obtain more accurate doublet-quartet energy gaps for this triradical. The spin-constraint broken-symmetry (CBS)-DFT method has been used to reduce the overestimation of energy gaps from BS-DFT. To address the issues of spin-contamination and the multireference nature of low-spin states affecting the DFT methods, we have computed the energy gaps using appropriately state-averaged CASSCF and NEVPT2 computations. Using a series of active spaces, our calculations are shown to provide quite accurate values in concordance with the experimentally observed results. Furthermore, we have proposed and modeled another two triradicals based on Blatter's radical, which are of interest for experimental synthesis and characterization. Our computations show that all these triradicals also have a quartet ground state with a similar energy difference between the excited doublet states.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - K R Shamasundar
- Indian Institute of Science Education and Research Mohali, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Yu H, Heine T. Magnetic Coupling Control in Triangulene Dimers. J Am Chem Soc 2023; 145:19303-19311. [PMID: 37610306 PMCID: PMC10485925 DOI: 10.1021/jacs.3c05178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 08/24/2023]
Abstract
Metal-free magnetism remains an enigmatic field, offering prospects for unconventional magnetic and electronic devices. In the pursuit of such magnetism, triangulenes, endowed with inherent spin polarization, are promising candidates to serve as monomers to construct extended structures. However, controlling and enhancing the magnetic interactions between the monomers persist as a significant challenge in molecular spintronics, as so far only weak antiferromagnetic coupling through the linkage has been realized, hindering their room temperature utilization. Herein, we investigate 24 triangulene dimers using first-principles calculations and demonstrate their tunable magnetic coupling (J), achieving unprecedented strong J values of up to -144 meV in a non-Kekulé dimer. We further establish a positive correlation between bandgap, electronic coupling, and antiferromagnetic interaction, thereby providing molecular-level insights into enhancing magnetic interactions. By twisting the molecular fragments, we demonstrate an effective and feasible approach to control both the sign and strength of J by tuning the balance between potential and kinetic exchanges. We discover that J can be substantially boosted at planar configurations up to -198 meV. We realize ferromagnetic coupling in nitrogen-doped triangulene dimers at both planar and largely twisted configurations, representing the first example of ferromagnetic triangulene dimers that cannot be predicted by the Ovchinnikov rule. This work thus provides a practical strategy for augmenting magnetic coupling and open up new avenues for metal-free ferromagnetism.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66c, 01062 Dresden, Germany
| | - Thomas Heine
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66c, 01062 Dresden, Germany
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
3
|
Yu H, Sun J, Heine T. Predicting Magnetic Coupling and Spin-Polarization Energy in Triangulene Analogues. J Chem Theory Comput 2023. [PMID: 37263582 DOI: 10.1021/acs.jctc.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Triangulene and its analogue metal-free magnetic systems have garnered increasing attention since their discovery. Predicting the magnetic coupling and spin-polarization energy with quantitative accuracy is beyond the predictive power of today's density functional theory (DFT) due to their intrinsic multireference character. Herein, we create a benchmark dataset of 25 magnetic systems with nonlocal spin densities, including the triangulene monomer, dimer, and their analogues. We calculate the magnetic coupling (J) and spin-polarization energy (ΔEspin) of these systems using complete active space self-consistent field (CASSCF) and coupled-cluster methods as high-quality reference values. This reference data is then used to benchmark 22 DFT functionals commonly used in material science. Our results show that, while some functionals consistently correctly predict the qualitative character of the ground state, achieving quantitative accuracy with small relative errors is currently not feasible. PBE0, M06-2X, and MN15 are predicting the correct electronic ground state for all systems investigated here and also have the lowest mean absolute error for predicting both ΔEspin (0.34, 0.32, and 0.31 eV) and J (11.74, 12.66, and 10.64 meV). They may therefore also serve as starting points for higher-level methods such as the GW or the random phase approximation. As other functionals fail for the prediction of the ground state, they cannot be recommended for metal-free magnetic systems.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty of Chemistry and Food Chemistry, TU Dresden, 01069 Dresden, Germany
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, 01069 Dresden, Germany
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 04316 Leipzig, Germany
- Department of Chemistry, Yonsei University and IBS CNM, Seoul 120-749, Korea
| |
Collapse
|
4
|
Rao L, Wang F. Diffusion quantum Monte Carlo method on diradicals using single- and multi-determinant-Jastrow trial wavefunctions and different orbitals. J Chem Phys 2022; 156:124308. [DOI: 10.1063/5.0086606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, the diffusion quantum Monte Carlo (DMC) method is employed to calculate the energies of singlet and triplet states for a series of organic diradicals and diatomic diradicals with π2 configuration. Single-determinant-Jastrow (SDJ) trial wavefunctions for triplet states, two-determinant-Jastrow (2DJ) trial wavefunctions for the singlet states, and multi-determinant-Jastrow (MDJ) trial wavefunctions are employed in DMC calculations using restricted open-shell B3LYP (ROB3LYP) orbitals, complete-active-space self-consistent field (CASSCF) orbitals, state-average CASSCF orbitals, or frozen-CASSCF orbitals. Our results show that DMC energies using either SDJ/2DJ or MDJ with ROB3LYP orbitals are close to or lower than those with the other orbitals for organic diradicals, while they are not very sensitive to the employed orbitals for diatomic diradicals. Furthermore, using MDJ can reduce DMC energies to some extent for most of the investigated organic diradicals and some diatomic diradicals. The importance of MDJ on DMC energies can be estimated based on the percentage of main determinants in the CASCI wavefunction. On the other hand, singlet–triplet gaps can be calculated reasonably with DMC using MDJ with a mean absolute error of less than 2 kcal/mol with all these orbitals. CASCI wavefunctions using density functional theory orbitals are preferred in constructing MDJ trial wavefunctions in practical DMC calculations since it is easier to obtain such wavefunctions than CASSCF methods.
Collapse
Affiliation(s)
- Lu Rao
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
5
|
Khurana R, Bajaj A, Ali ME. Tuning the magnetic properties of a diamagnetic di-Blatter's zwitterion to antiferro- and ferromagnetically coupled diradicals. Phys Chem Chem Phys 2022; 24:2543-2553. [PMID: 35024707 DOI: 10.1039/d1cp04807d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest of obtaining organic molecular magnets based on stable diradicals, we have tuned the inherent zwitterionic ground state of tetraphenylhexaazaanthracene (TPHA), a molecule containing two Blatter's moieties, by adopting two different strategies. In the first strategy, we have increased the length of the coupler between the two radical moieties and observed a transition from the zwitterionic ground state to the diradicalized state. With a larger coupler, ferromagnetic interactions are realized based on density functional theory (DFT) and wave-function theory (WFT) based complete active space self-consistent field (CASSCF)-N-electron valence state perturbation theory (NEVPT2) methods. An analysis based on the extent of spin contamination, diradical character, CASSCF orbital occupation number, Head-Gordon's index, HOMO-LUMO and SOMOs energy gaps is demonstrated that marks the transition of the ground state in these systems. In another approach, we systematically explore the effect of push-pull substitution on the way to obtain molecules based on a TPHA skeleton with diradicaloid state and, in some cases, even a triplet ground state.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| | - Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Bartos P, Hande AA, Pietrzak A, Chrostowska A, Kaszyński P. Substituent effects on the electronic structure of the flat Blatter radical: correlation analysis of experimental and computational data. NEW J CHEM 2021. [DOI: 10.1039/d1nj05137g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Functionalized flat Blatter radicals were obtained and substituent effects on spectroscopy, electrochemistry, and stability were investigated by correlation and DFT methods.
Collapse
Affiliation(s)
- Paulina Bartos
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
| | - Aniket A. Hande
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
- Université de Pau et des Pays de l’Adour E2S UPPA, CNRS, IPREM 64000, Pau, France
| | - Anna Pietrzak
- Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-024, Łódź, Poland
| | - Anna Chrostowska
- Université de Pau et des Pays de l’Adour E2S UPPA, CNRS, IPREM 64000, Pau, France
| | - Piotr Kaszyński
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| |
Collapse
|