1
|
Park Y, Noda I, Jung YM. Novel Developments and Progress in Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241255393. [PMID: 38872353 DOI: 10.1177/00037028241255393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This first of the two-part series of the comprehensive survey review on the progress of the two-dimensional correlation spectroscopy (2D-COS) field during the period 2021-2022, covers books, reviews, tutorials, novel concepts and theories, and patent applications that appeared in the last two years, as well as some inappropriate use or citations of 2D-COS. The overall trend clearly shows that 2D-COS is continually growing and evolving with notable new developments. The technique is well recognized as a powerful analytical tool that provides deep insights into systems in many science fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
2
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
3
|
McManus JW, Allum F, Featherstone J, Lam CS, Brouard M. Two-Dimensional Projected-Momentum Covariance Mapping for Coulomb Explosion Imaging. J Phys Chem A 2024; 128:3220-3229. [PMID: 38607425 PMCID: PMC11056990 DOI: 10.1021/acs.jpca.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
We introduce projected-momentum covariance mapping, an extension of recoil-frame covariance mapping for 2D ion imaging studies. By considering the two-dimensional projection of the ion momenta as recorded by the detector, one opens the door to a complex suite of analysis tools adapted from three-dimensional momentum imaging studies. This includes the use of different frames of reference to unravel the dynamics of fragmentation and the application of fragment momentum constraints to isolate specific fragmentation channels. The technique is demonstrated on data from a two-dimensional ion imaging study of the Coulomb explosion of the cis and trans isomers of 1,2-dichloroethene, following strong-field ionization by an intense near-infrared femtosecond laser pulse. Classical simulations are used to guide the interpretation of projected-momentum covariance maps. The results offer a detailed insight into the distinct Coulomb explosion dynamics for this pair of isomers and lay the groundwork for future time-resolved studies of photoisomerization dynamics in this molecular system.
Collapse
Affiliation(s)
- Joseph W. McManus
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | | | - Josh Featherstone
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Chow-Shing Lam
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Mark Brouard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
4
|
Heathcote D, Robertson PA, Butler AA, Ridley C, Lomas J, Buffett MM, Bell M, Vallance C. Electron-induced dissociation dynamics studied using covariance-map imaging. Faraday Discuss 2022; 238:682-699. [PMID: 35781475 DOI: 10.1039/d2fd00033d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, covariance analysis has found significant use in the field of chemical reaction dynamics. When coupled with data from product time-of-flight mass spectrometry and/or multi-mass velocity-map imaging, it allows us to uncover correlations between two or more ions formed from the same parent molecule. While the approach has parallels with coincidence measurements, covariance analysis allows experiments to be performed at much higher count rates than traditional coincidence methods. We report results from electron-molecule crossed-beam experiments, in which covariance analysis is used to elucidate the dissociation dynamics of multiply-charged ions formed by electron ionisation over the energy range from 50 to 300 eV. The approach is able to isolate signal contributions from multiply charged ions even against a very large 'background' of signal arising from dissociation of singly-charged parent ions. Covariance between the product time-of-flight spectra identifies pairs of fragments arising from the same parent ions, while covariances between the velocity-map images ('recoil-frame covariances') reveal the relative velocity distributions of the ion pairs. We show that recoil-frame covariance analysis can be used to distinguish between multiple plausible dissociation mechanisms, including multi-step processes, and that the approach becomes particularly powerful when investigating the fragmentation dynamics of larger molecules with a higher number of possible fragmentation pathways.
Collapse
Affiliation(s)
- David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Patrick A Robertson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Alexander A Butler
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Cian Ridley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - James Lomas
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Madeline M Buffett
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Megan Bell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
5
|
Robertson PA, Heathcote D, Milešević D, Vallance C. Imaging the Dynamics of the Electron Ionization of C 2F 6. J Phys Chem A 2022; 126:7221-7229. [PMID: 36194389 PMCID: PMC9574930 DOI: 10.1021/acs.jpca.2c05606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The dissociation of C2F6 following
electron
ionization at 100 eV has been studied using multimass velocity-map
ion imaging and covariance-map imaging analysis. Single ionization
events form parent C2F6+ cations
in an ensemble of electronic states, which follow a multiplex of relaxation
pathways to eventually dissociate into ionic and neutral fragment
products. We observe CF3+, CF2+, CF+, C+, F+, C2F5+, C2F4+, C2F2+, and C2F+ ions, all of which can reasonably be formed from singly charged
parent ions. Dissociation along the C–C bond typically forms
slow-moving, internally excited products, whereas C–F bond
cleavage is rapid and impulsive. Dissociation from the à state
of the cation preferentially forms C2F5+ and neutral F along a purely repulsive surface. No other
electronic state of the ion will form this product pair at the electron
energies studied in this work, nor do we observe any crossing onto
this surface from higher-lying states of the parent ion. Multiply
charged dissociative pathways are also explored, and we note characteristic
high kinetic energy release channels due to Coulombic repulsion between
charged fragments. The most abundant ion pair we observe is (CF2+, CF+), and we also observe ion pair
signals in the covariance maps associated with almost all possible
C–C bond cleavage products as well as between F+ and each of CF3+, CF2+, CF+, and C+. No covariance between F+ and C2F5+ is observed, implying
that any C2F5+ formed with F+ is unstable and undergoes secondary fragmentation. Dissociation
of multiply charged parent ions occurs via a number of mechanisms,
details of which are revealed by recoil-frame covariance-map imaging.
Collapse
Affiliation(s)
| | - David Heathcote
- Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, U.K
| | - Dennis Milešević
- Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, U.K
| | - Claire Vallance
- Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, U.K
| |
Collapse
|
6
|
McManus JW, Walmsley T, Nagaya K, Harries JR, Kumagai Y, Iwayama H, Ashfold MNR, Britton M, Bucksbaum PH, Downes-Ward B, Driver T, Heathcote D, Hockett P, Howard AJ, Kukk E, Lee JWL, Liu Y, Milesevic D, Minns RS, Niozu A, Niskanen J, Orr-Ewing AJ, Owada S, Rolles D, Robertson PA, Rudenko A, Ueda K, Unwin J, Vallance C, Burt M, Brouard M, Forbes R, Allum F. Disentangling sequential and concerted fragmentations of molecular polycations with covariant native frame analysis. Phys Chem Chem Phys 2022; 24:22699-22709. [PMID: 36106844 DOI: 10.1039/d2cp03029b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.
Collapse
Affiliation(s)
- Joseph W McManus
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tiffany Walmsley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Yoshiaki Kumagai
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| | - Hiroshi Iwayama
- UVSOR Synchrotron Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Mathew Britton
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Briony Downes-Ward
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Taran Driver
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - David Heathcote
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Paul Hockett
- National Research Council of Canada, 100 Sussex Dr., Ottawa, ON K1A 0R6, Canada
| | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jason W L Lee
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Yusong Liu
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dennis Milesevic
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Russell S Minns
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Akinobu Niozu
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan.,Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - Patrick A Robertson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - James Unwin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ruaridh Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | - Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.,Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| |
Collapse
|
7
|
Yifrach Y, Baraban JH, Bar I. Kinetic Energy-Broadened Spatial Map Imaging for Recovering Dynamical Information. J Phys Chem A 2022; 126:6767-6779. [DOI: 10.1021/acs.jpca.2c04444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zhang S, Wang X, Jiang W, Zhang Y, Jiang Y, Zhu Z. Charge-encoded multi-photoion coincidence for three-body fragmentation of CO 2 in the strong laser fields. J Chem Phys 2022; 156:134302. [DOI: 10.1063/5.0085539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photoion–photoion coincidence (PIPICO) is a simple and effective approach for the selection of correlated fragments in a specific dissociating channel in molecules. We propose here a charge-encoded multi-photoion coincidence (cMUPICO) method, in analogy to traditional PIPICO, however in which the charge of individual fragments is taken into account. The cMUPICO method allows for clearly displaying coincident channels for dissociation channels containing three more fragments with unequal charge states, invisible in the traditional PIPICO. As a demonstration, three-body fragmentation dynamics of CO2 in strong IR laser fields is analyzed, and 11 dissociation channels are effectively identified, five of which are first found with cMUPICO. The present results show that cMUPICO is a powerful and practical tool for distinguishing various dissociation channels with multiply charged multi-photoions.
Collapse
Affiliation(s)
- Shuai Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincheng Wang
- Center for Transformative Science and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenbin Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yizhu Zhang
- Center for Terahertz Waves and School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yuhai Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Transformative Science and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhiyuan Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Transformative Science and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Orr-Ewing AJ, Crawford TD, Zanni MT, Hartland G, Shea JE. A Venue for Advances in Experimental and Theoretical Methods in Physical Chemistry. J Phys Chem A 2022; 126:177-179. [PMID: 35045707 DOI: 10.1021/acs.jpca.1c10457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Molecular Sciences Software Institute, 1880 Pratt Drive, Suite 1100, Blacksburg, Virginia 24060, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gregory Hartland
- University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|