1
|
McMonagle CJ, Fuller CA, Hupf E, Malaspina LA, Grabowsky S, Chernyshov D. Lattice response to the radiation damage of molecular crystals: radiation-induced versus thermal expansivity. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:13-18. [PMID: 38174727 PMCID: PMC10848411 DOI: 10.1107/s2052520623010636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The interaction of intense synchrotron radiation with molecular crystals frequently modifies the crystal structure by breaking bonds, producing fragments and, hence, inducing disorder. Here, a second-rank tensor of radiation-induced lattice strain is proposed to characterize the structural susceptibility to radiation. Quantitative estimates are derived using a linear response approximation from experimental data collected on three materials Hg(NO3)2(PPh3)2, Hg(CN)2(PPh3)2 and BiPh3 [PPh3 = triphenylphosphine, P(C6H5)3; Ph = phenyl, C6H5], and are compared with the corresponding thermal expansivities. The associated eigenvalues and eigenvectors show that the two tensors are not the same and therefore probe truly different structural responses. The tensor of radiative expansion serves as a measure of the susceptibility of crystal structures to radiation damage.
Collapse
Affiliation(s)
| | | | - Emanuel Hupf
- University of Bremen, Department 2 – Biology/Chemistry, Leobener Str. 7, 29359 Bremen, Germany
| | - Lorraine A. Malaspina
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simon Grabowsky
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland
| | | |
Collapse
|
2
|
Nartova AV, Kvon RI, Kovtunova LM, Skovpin IV, Koptyug IV, Bukhtiyarov VI. XPS and HR TEM Elucidation of the Diversity of Titania-Supported Single-Site Ir Catalyst Performance in Spin-Selective Propene Hydrogenation. Int J Mol Sci 2023; 24:15643. [PMID: 37958626 PMCID: PMC10650017 DOI: 10.3390/ijms242115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Immobilized [Ir(COD)Cl]2-Linker/TiO2 catalysts with linkers containing Py, P(Ph)2 and N(CH3)2 functional groups were prepared. The catalysts were tested via propene hydrogenation with parahydrogen in a temperature range from 40 °C to 120 °C which was monitored via NMR. The catalytic behavior of [Ir(COD)Cl]2-Linker/TiO2 is explained on the basis of quantitative and qualitative XPS data analysis performed for the catalysts before and after the reaction at 120 °C. It is shown that the temperature dependence of propene conversion and the enhancement of the NMR signal are explained via a combination of the stabilities of both the linker and immobilized [Ir(COD)Cl]2 complex. It is demonstrated that the N(CH3)2-linker is the most stable at the surface of TiO2 under used reaction conditions. As a result, only this sample shows a rise in the enhancement of the NMR signal in the 100-120 °C temperature range.
Collapse
Affiliation(s)
- Anna V. Nartova
- Department of Physical-Chemical Methods of Investigation, Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (R.I.K.); (V.I.B.)
| | - Ren I. Kvon
- Department of Physical-Chemical Methods of Investigation, Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (R.I.K.); (V.I.B.)
| | - Larisa M. Kovtunova
- Department of Physical-Chemical Methods of Investigation, Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (R.I.K.); (V.I.B.)
| | - Ivan V. Skovpin
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Institutskaya St. 3A, 630090 Novosibirsk, Russia (I.V.K.)
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Institutskaya St. 3A, 630090 Novosibirsk, Russia (I.V.K.)
| | - Valerii I. Bukhtiyarov
- Department of Physical-Chemical Methods of Investigation, Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (R.I.K.); (V.I.B.)
| |
Collapse
|
3
|
Garman EF, Weik M. Radiation damage to biological macromolecules∗. Curr Opin Struct Biol 2023; 82:102662. [PMID: 37573816 DOI: 10.1016/j.sbi.2023.102662] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
In this review, we describe recent research developments into radiation damage effects in macromolecular X-ray crystallography observed at synchrotrons and X-ray free electron lasers. Radiation damage in small molecule X-ray crystallography, small angle X-ray scattering experiments, microelectron diffraction, and single particle cryo-electron microscopy is briefly covered.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| |
Collapse
|
4
|
Krivina RA, Zlatar M, Stovall TN, Lindquist GA, Eascalera-López D, Cook AK, Hutchison JE, Cherevko S, Boettcher SW. Oxygen Evolution Electrocatalysis in Acids: Atomic Tuning of the Stability Number for Submonolayer IrO x on Conductive Oxides from Molecular Precursors. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Raina A. Krivina
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - T. Nathan Stovall
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Grace A. Lindquist
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Daniel Eascalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - James E. Hutchison
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
| | - Shannon W. Boettcher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
5
|
Fernando NK, Bostrom HLB, Murray CA, Owen RL, Thompson AL, Dickerson JL, Garman EF, Cairns AB, Regoutz A. Variability in X-ray induced effects in [Rh(COD)Cl] 2 with changing experimental parameters. Phys Chem Chem Phys 2022; 24:28444-28456. [PMID: 36399064 PMCID: PMC7614095 DOI: 10.1039/d2cp03928a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
X-ray characterisation methods have undoubtedly enabled cutting-edge advances in all aspects of materials research. Despite the enormous breadth of information that can be extracted from these techniques, the challenge of radiation-induced sample change and damage remains prevalent. This is largely due to the emergence of modern, high-intensity X-ray source technologies and the growing potential to carry out more complex, longer duration in situ or in operando studies. The tunability of synchrotron beamlines enables the routine application of photon energy-dependent experiments. This work explores the structural stability of [Rh(COD)Cl]2, a widely used catalyst and precursor in the chemical industry, across a range of beamline parameters that target X-ray energies of 8 keV, 15 keV, 18 keV and 25 keV, on a powder X-ray diffraction synchrotron beamline at room temperature. Structural changes are discussed with respect to absorbed X-ray dose at each experimental setting associated with the respective photon energy. In addition, the X-ray radiation hardness of the catalyst is discussed, by utilising the diffraction data collected at the different energies to determine a dose limit, which is often considered in protein crystallography and typically overlooked in small molecule crystallography. This work not only gives fundamental insight into how damage manifests in this organometallic catalyst, but will encourage careful consideration of experimental X-ray parameters before conducting diffraction on similar radiation-sensitive organometallic materials.
Collapse
Affiliation(s)
- Nathalie K. Fernando
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hanna L. B. Bostrom
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Claire A. Murray
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Robin L. Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Amber L. Thompson
- Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Joshua L. Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Elspeth F. Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Andrew B. Cairns
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, UK
| | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
6
|
Boström HLB, Cairns AB, Chen M, Daisenberger D, Ridley CJ, Funnell NP. Radiation effects, zero thermal expansion, and pressure-induced phase transition in CsMnCo(CN) 6. Phys Chem Chem Phys 2022; 24:25072-25076. [PMID: 36227089 DOI: 10.1039/d2cp03754h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Prussian blue analogue CsMnCo(CN)6 is studied using powder X-ray and neutron diffraction under variable temperature, pressure, and X-ray exposure. It retains cubic F4̄3m symmetry in the range 85-500 K with minimal thermal expansion, whereas a phase transition to P4̄n2 occurs at ∼2 GPa, driven by octahedral tilting. A small lattice contraction occurs upon increased X-ray dose. Comparisons with related systems indicate that the CsI ions decrease the thermal expansion and suppress the likelihood of phase transformations. The results improve the understanding of the stimuli-responsive behaviour of coordination polymers.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany.
| | - Andrew B Cairns
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, London, UK
- London Centre for Nanotechnology, Imperial College London, SW7 2AZ, London, UK
| | - Muzi Chen
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, London, UK
- London Centre for Nanotechnology, Imperial College London, SW7 2AZ, London, UK
| | | | - Christopher J Ridley
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Nicholas P Funnell
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| |
Collapse
|
7
|
Collings IE, Hanfland M. Effect of synchrotron X-ray radiation damage on phase transitions in coordination polymers at high pressure. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:100-106. [PMID: 35411849 DOI: 10.1107/s2052520622001305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The high-pressure phase-transition behaviour of metal-organic frameworks and coordination polymers upon varying degrees of X-ray irradiation are highlighted with four example studies. These show that, in certain cases, the radiation damage, while not extreme in changing unit-cell values, can impact the existence of a phase transition. In particular, pressure-induced phase transitions are suppressed after a certain absorbed dose threshold is reached for the sample. This is thought to be due to partial amorphization and/or defect formation in the sample, hindering the co-operative structural distortions needed for a phase transition. The high-pressure experiments were conducted with several crystals within the sample chamber in order to measure crystals with minimal X-ray irradiation at the highest pressures, which are compared with the crystals measured continuously upon pressure increase. Ways to minimize radiation damage are also discussed within the frame of high-pressure experiments.
Collapse
Affiliation(s)
- Ines E Collings
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Michael Hanfland
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| |
Collapse
|
8
|
Garman EF, Weik M. Radiation damage to biological samples: still a pertinent issue. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1278-1283. [PMID: 34475277 PMCID: PMC8415327 DOI: 10.1107/s1600577521008845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An understanding of radiation damage effects suffered by biological samples during structural analysis using both X-rays and electrons is pivotal to obtain reliable molecular models of imaged molecules. This special issue on radiation damage contains six papers reporting analyses of damage from a range of biophysical imaging techniques. For X-ray diffraction, an in-depth study of multi-crystal small-wedge data collection single-wavelength anomalous dispersion phasing protocols is presented, concluding that an absorbed dose of 5 MGy per crystal was optimal to allow reliable phasing. For small-angle X-ray scattering, experiments are reported that evaluate the efficacy of three radical scavengers using a protein designed to give a clear signature of damage in the form of a large conformational change upon the breakage of a disulfide bond. The use of X-rays to induce OH radicals from the radiolysis of water for X-ray footprinting are covered in two papers. In the first, new developments and the data collection pipeline at the NSLS-II high-throughput dedicated synchrotron beamline are described, and, in the second, the X-ray induced changes in three different proteins under aerobic and low-oxygen conditions are investigated and correlated with the absorbed dose. Studies in XFEL science are represented by a report on simulations of ultrafast dynamics in protic ionic liquids, and, lastly, a broad coverage of possible methods for dose efficiency improvement in modalities using electrons is presented. These papers, as well as a brief synopsis of some other relevant literature published since the last Journal of Synchrotron Radiation Special Issue on Radiation Damage in 2019, are summarized below.
Collapse
Affiliation(s)
- Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|