1
|
Lang J, Foley CD, Thawoos S, Behzadfar A, Liu Y, Zádor J, Suits AG. Reaction dynamics of S( 3P) with 1,3-butadiene and isoprene: crossed-beam scattering, low-temperature flow experiments, and high-level electronic structure calculations. Faraday Discuss 2024; 251:550-572. [PMID: 38807494 DOI: 10.1039/d4fd00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Sulfur atoms serve as key players in diverse chemical processes, from astrochemistry at very low temperature to combustion at high temperature. Building upon our prior findings, showing cyclization to thiophenes following the reaction of ground-state sulfur atoms with dienes, we here extend this investigation to include many additional reaction products, guided by detailed theoretical predictions. The outcomes highlight the complex formation of products during intersystem crossing (ISC) to the singlet surfaces. Here, we employed crossed-beam velocity map imaging and high-level ab initio methods to explore the reaction of S(3P) with 1,3-butadiene and isoprene under single-collision conditions and in low-temperature flows. For the butadiene reaction, our experimental results show the formation of thiophene via H2 loss, a 2H-thiophenyl radical through H loss, and thioketene through ethene loss at a slightly higher collision energy compared to previous observations. Complementary Chirped-Pulse Fourier-Transform mmWave spectroscopy (CP-FTmmW) measurements in a uniform flow confirmed the formation of thioketene in the reaction at 20 K. For the isoprene reaction, we observed analogous products along with the 2H-thiophenyl radical arising from methyl loss and C3H4S (loss of ethene or H2 + acetylene). CP-FTmmW detected the formation of thioformaldehyde via loss of 1,3-butadiene, again in the 20 K flow. Coupled-cluster calculations on the pathways found by the automated kinetic workflow code KinBot support these findings and indicate ISC to the singlet surface, leading to the generation of various long-lived intermediates, including 5-membered heterocycles.
Collapse
Affiliation(s)
- Jinxin Lang
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Casey D Foley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Shameemah Thawoos
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Abbas Behzadfar
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Yanan Liu
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, USA.
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
Balucani N, Vanuzzo G, Recio P, Caracciolo A, Rosi M, Cavallotti C, Baggioli A, Della Libera A, Casavecchia P. Crossed molecular beam experiments and theoretical simulations on the multichannel reaction of toluene with atomic oxygen. Faraday Discuss 2024; 251:523-549. [PMID: 38868901 DOI: 10.1039/d3fd00181d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Despite extensive experimental and theoretical studies on the kinetics of the O(3P) + C7H8 (toluene) reaction and a pioneering crossed molecular beam (CMB) investigation, the branching fractions (BFs) of the CH3C6H4O(methylphenoxy) + H, C6H5O(phenoxy) + CH3, and spin-forbidden C5H5CH3 (methylcyclopentadiene) + CO product channels remain an open question, which has hampered the proper inclusion of this important reaction in the chemical modelling of various chemical environments. We report a CMB study with universal soft electron-ionization mass-spectrometric detection of the reactions O(3P,1D) + toluene at the collision energy of 34.7 kJ mol-1. From CMB data we have inferred the reaction dynamics and quantified the BFs of the primary products and the role of intersystem crossing (ISC). The CH3-elimination channel dominates (BF = 0.69 ± 0.22) in the O(3P) reaction, while the H-displacement and CO-formation channels are minor (BF = 0.22 ± 0.07 and 0.09 ± 0.05, respectively), with ISC accounting for more than 50% of the reactive flux. Synergistic transition-state theory (TST)-based master equation simulations including nonadiabatic TST on ab initio coupled triplet/singlet potential energy surfaces were employed to compute the product BFs and assist in the interpretation of the CMB results. In the light of the good agreement between the theoretical predictions for the O(3P) + toluene reaction and the CMB results as well as the absolute rate constant as a function of temperature (T) (from literature), the so-validated computational methodology was used to predict channel-specific rate constants as a function of T at 1 atm.
Collapse
Affiliation(s)
- Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia 06123, Italy.
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia 06123, Italy.
| | - Pedro Recio
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia 06123, Italy.
| | - Adriana Caracciolo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia 06123, Italy.
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Perugia, Perugia 06125, Italy
| | - Carlo Cavallotti
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica, Milano 20131, Italy
| | - Alberto Baggioli
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica, Milano 20131, Italy
| | - Andrea Della Libera
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica, Milano 20131, Italy
| | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia 06123, Italy.
| |
Collapse
|
3
|
Li H, Lang J, Foley CD, Zádor J, Suits AG. Sulfur ( 3P) Reaction with Conjugated Dienes Gives Cyclization to Thiophenes under Single Collision Conditions. J Phys Chem Lett 2023; 14:7611-7617. [PMID: 37594479 DOI: 10.1021/acs.jpclett.3c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We combine crossed-beam velocity map imaging with high-level ab initio/transition state theory modeling of the reaction of S(3P) with 1,3-butadiene and isoprene under single collision conditions. For the butadiene reaction, we detect both H and H2 loss from the initial adduct, and from reaction with isoprene, we see both H loss and methyl loss. Theoretical calculations confirm these arise following intersystem crossing to the singlet surface forming long-lived intermediates. For the butadiene reaction, these lose H2 to form thiophene as the dominant channel, H to form the detected 2H-thiophenyl radical, or ethene, giving thioketene. For isoprene, additional reaction products are suggested by theory, including the observed H and methyl loss radicals, but also methyl thiophene, thioformaldehyde, and thioketene. The results for S(3P) + 1,3-butadiene, showing direct cyclization to the aromatic product and yielding few bimolecular product channels, are in striking contrast to those for the analogous O(3P) reaction.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jinxin Lang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Casey D Foley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Zádor J, Martí C, Van de Vijver R, Johansen SL, Yang Y, Michelsen HA, Najm HN. Automated Reaction Kinetics of Gas-Phase Organic Species over Multiwell Potential Energy Surfaces. J Phys Chem A 2023; 127:565-588. [PMID: 36607817 DOI: 10.1021/acs.jpca.2c06558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Automation of rate-coefficient calculations for gas-phase organic species became possible in recent years and has transformed how we explore these complicated systems computationally. Kinetics workflow tools bring rigor and speed and eliminate a large fraction of manual labor and related error sources. In this paper we give an overview of this quickly evolving field and illustrate, through five detailed examples, the capabilities of our own automated tool, KinBot. We bring examples from combustion and atmospheric chemistry of C-, H-, O-, and N-atom-containing species that are relevant to molecular weight growth and autoxidation processes. The examples shed light on the capabilities of automation and also highlight particular challenges associated with the various chemical systems that need to be addressed in future work.
Collapse
Affiliation(s)
- Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | | | - Sommer L Johansen
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Yoona Yang
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| | - Hope A Michelsen
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder80309, Colorado, United States
| | - Habib N Najm
- Combustion Research Facility, Sandia National Laboratories, Livermore94550, California, United States
| |
Collapse
|
5
|
Zhao Q, Savoie BM. Algorithmic Explorations of Unimolecular and Bimolecular Reaction Spaces. Angew Chem Int Ed Engl 2022; 61:e202210693. [PMID: 36074520 PMCID: PMC9827825 DOI: 10.1002/anie.202210693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Algorithmic reaction exploration based on transition state searches has already made inroads into many niche applications, but its potential as a general-purpose tool is still largely unrealized. Computational cost and the absence of benchmark problems involving larger molecules remain obstacles to further progress. Here an ultra-low cost exploration algorithm is implemented and used to explore the reactivity of unimolecular and bimolecular reactants, comprising a total of 581 reactions involving 51 distinct reactants. The algorithm discovers all established reaction pathways, where such comparisons are possible, while also revealing a much richer reactivity landscape, including lower barrier reaction pathways and a strong dependence of reaction conformation in the apparent barriers of the reported reactions. The diversity of these benchmarks illustrate that reaction exploration algorithms are approaching general-purpose capability.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| | - Brett M. Savoie
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
6
|
Doner A, Zádor J, Rotavera B. Stereoisomer-dependent unimolecular kinetics of 2,4-dimethyloxetane peroxy radicals. Faraday Discuss 2022; 238:295-319. [DOI: 10.1039/d2fd00029f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,4,dimethyloxetane is an important cyclic ether intermediate that is produced from hydroperoxyalkyl (QOOH) radicals in low-temperature combustion of n-pentane. However, reaction mechanisms and rates of consumption pathways remain unclear. In...
Collapse
|
7
|
Cavallotti C, Della Libera A, Zhou CW, Recio P, Caracciolo A, Balucani N, Casavecchia P. Crossed-beam and theoretical studies of multichannel nonadiabatic reactions: branching fractions and role of intersystem crossing for O(3P)+1,3-butadiene. Faraday Discuss 2022; 238:161-182. [DOI: 10.1039/d2fd00037g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomic oxygen reactions can contribute significantly to the oxidation of unsaturated aliphatic and aromatic hydrocarbons. The reaction mechanism is started by electrophilic O atom addition to the unsaturated bond(s) to...
Collapse
|
8
|
Xu J, Xu X, Li D, Jian J. Spectroscopic Characterization of Two Boron Heterocyclic Radicals in the Solid Neon Matrix. Phys Chem Chem Phys 2022; 24:7961-7968. [DOI: 10.1039/d2cp00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel boron heterocyclic radicals, 3,4,5-trihydroborinine radical and 1-methyl-2-dihydro-1H-borole radical, were observed in the reaction of boron atom with cyclopentene. These radicals were trapped in solid neon and identified by...
Collapse
|