1
|
Wu X, Xie X, Troisi A. Calibration of several first excited state properties for organic molecules through systematic comparison of TDDFT with experimental spectra. JOURNAL OF MATERIALS CHEMISTRY. C 2024:d4tc03511a. [PMID: 39444434 PMCID: PMC11492815 DOI: 10.1039/d4tc03511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Time-dependent density functional theory (TDDFT) is a powerful computational tool for investigating excitation properties in organic electronics, and it holds significant potential for high-throughput virtual screening (HTVS) in this field. While most benchmarks focus on excitation energies, less attention has been paid to evaluating the accuracy of computed oscillator strengths and exciton reorganization energies against experimental data. In this work, we provide a systematic approach to evaluate in parallel the accuracy of these three quantities on the basis of a suitable fitting of the experimental absorption spectra of 71 molecules in solution. After considering 18 computational methodologies, the results from the M06-2X/def2-TZVP/PCM method demonstrate the strongest correlation with experimental data across the desired properties. For HTVS, the M06-2X/6-31G(d)/PCM method appears to be a particularly convenient choice among all methodologies due to its balance of computational efficiency and accuracy. Our results provide an additional benchmark needed before employing TDDFT methods for the discovery and design of organic electronic molecules.
Collapse
Affiliation(s)
- Xia Wu
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University Qingdao Shandong 266237 China
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
2
|
Garcia-Alvarez JC, Gozem S. Absorption Intensities of Organic Molecules from Electronic Structure Calculations versus Experiments: the Effect of Solvation, Method, Basis Set, and Transition Moment Gauge. J Chem Theory Comput 2024; 20. [PMID: 39141425 PMCID: PMC11360136 DOI: 10.1021/acs.jctc.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Recently, we derived experimental oscillator strengths (OSs) from well-defined UV-visible absorption spectral peaks of 100 molecules in solution. Here, we focus on a subset of transitions with the highest reliability to further benchmark the OSs from several wave function methods and density functionals. We consider multiple basis sets, transition moment gauges (length, velocity, and mixed), and solvent corrections. Most transitions in the comparison set come from conjugated molecules and have π → π* character. We use an automated algorithm to assign computed transitions to experimental bands. OSs computed using the Tamm-Dancoff approximation (TDA), CIS, or EOM-CCSD exhibited a strong gauge dependence, which is diminished in linear response theories (TD-DFT, TD-HF, and to a smaller degree LR-CCSD). OSs calculated from TD-DFT with PCM solvent models are systematically larger than apparent OSs derived from experimental spectra. For example, fcomp from hybrid functionals and PCM have mean absolute errors that are ∼10% of n·fexp, where n is a solvent refractive index factor that arises from the energy flux of the radiation field in a dielectric (solvent). Theoretical cavity field corrections considering spherical cavities do not improve the agreement between computed and experimental data. Corrections that account for the molecular shape and the direction of transition dipole moments, or that explicitly account for the effect of solvent molecules on the local field, should be more appropriate.
Collapse
Affiliation(s)
| | - Samer Gozem
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
3
|
Di Prima D, Reinholdt P, Kongsted J. Color Tuning in Bovine Rhodopsin through Polarizable Embedding. J Phys Chem B 2024. [PMID: 38489248 DOI: 10.1021/acs.jpcb.3c07891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Bovine rhodopsin is among the most studied proteins in the rhodopsin family. Its primary activation mechanism is the photoisomerization of 11-cis retinal, triggered by the absorption of a UV-visible photon. Different mutants of the same rhodopsin show different absorption wavelengths due to the influence of the specific amino acid residues forming the cavity in which the retinal chromophore is embedded, and rhodopsins activated at different wavelengths are, for example, exploited in the field of optogenetics. In this letter, we present a procedure for systematically investigating color tuning in models of bovine rhodopsin and a set of its mutants embedded in a membrane bilayer. Vertical excitation energy calculations were carried out with the polarizable embedding potential for describing the environment surrounding the chromophore. We show that polarizable embedding outperformed regular electrostatic embedding in determining both the vertical excitation energies and associated oscillator strengths of the systems studied.
Collapse
Affiliation(s)
- Duccio Di Prima
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| |
Collapse
|
4
|
Soltani Nejad M, Alipour M. How does theory compare to experiment for oscillator strengths in electronic spectra? Proposing range-separated hybrids with reliable accountability. Phys Chem Chem Phys 2024; 26:879-894. [PMID: 38087910 DOI: 10.1039/d3cp04793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
As an important quantity in atomic and molecular spectroscopy, oscillator strength should be mentioned. Oscillator strength is linked to the transition dipole moment and consequently to the transition probability between two states, where its magnitude is directly connected to the intensity of the peaks in ultraviolet-visible spectra. However, accurately accounting for oscillator strengths still remains one of the greatest challenges in theory and experiment. Given previous efforts in the context of investigations into oscillator strengths, the related theoretical treatments are relatively limited and have proven to be challenging. In this work, the oscillator strengths in the electronic spectra of organic compounds have thoroughly been investigated with the help of optimally tuned range-separated hybrids (OT-RSHs). In particular, variants of the OT-RSHs combined with the polarizable continuum model (PCM), OT-RSHs-PCM, as well as their screened versions accounting for the screening effects by the electron correlation through the dielectric constant, OT-SRSHs-PCM, are proposed for reliable prediction of the oscillator strengths. The role of the involved ingredients in the proposed methods, namely the underlying density functional approximations, short-range and long-range Hartree-Fock (HF) exchange, as well as the range-separation parameter, has been examined in detail. It is shown that any combination of the parameters in the proposed approximations does not render the reliable oscillator strengths, but a particular compromise among them is needed to describe the experimental data well. Perusing all the results of our developed methods, the best ones are found to be the generalized gradient approximation-based OT-RSHs-PCM, coupled with the linear response theory in the non-equilibrium solvation regime, with the correct asymptotic behavior and incorporating no (low) HF exchange contributions in the short-range part. The best proposed approximations also reveal superior performances not only with respect to their standard counterparts with the default parameters but also as compared to earlier range-separated functionals. Finally, the applicability of the best approximation is also put into broader perspective, where it is used for predicting the oscillator strengths in other sets of compounds not included in the process of developing the approximations. Hopefully, our proposed method can function as an affordable alternative to the expensive wave function-based methods for both theoretical modeling and confirming the experimental observations in the field of electronic spectroscopy.
Collapse
Affiliation(s)
- Mahdi Soltani Nejad
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | - Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
5
|
Gong K, Xu F, Zhao Z, Li W, Liu D, Zhou X, Wang L. Theoretical investigation on the functional group modulation of UV-Vis absorption profiles of triphenylamine derivatives. Phys Chem Chem Phys 2023; 25:22002-22010. [PMID: 37555282 DOI: 10.1039/d3cp01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Understanding the functional group modulation of electronic structure and excitation is pivotal to the design of organic small molecules (OSMs) for photoelectric applications. In this study, we employed density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to explore the unique absorption character of four triphenylamine photosensitizers. The various conformations were investigated given the multiple single bonds in the compounds, and the resemblance in the electronic structure of different conformations is affirmed because the coplanarity and consequent long-range conjugation is maintained regardless of the orientation of the flexible blocks. Six functionals were evaluated, and MN15 was found to successfully reproduce the intense secondary absorption peak for the double 3,4-ethylenedioxythiophene (EDOT) modified sensitizer over B3LYP, PBE0, M062X, CAM-B3LYP, and ωB97XD. The introduction of EDOT gives rise to a new excited state S4, which is a local excitation constrained in the EDOT substituent triphenylamine block. This new excited state S4, in combination with inherent S2 and S3 derived from prototype molecule TPA-Pyc, jointly contributes to the hump of the secondary absorption peak of ETE-Pyc and finally affects the light-harvesting ability of the dye-sensitized TiO2 photoanode. The current findings provide guidance toward the rational design of OSMs with good light-harvest ability.
Collapse
Affiliation(s)
- Kun Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Fang Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Zhen Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Wei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Dongzhi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Xueqin Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Lichang Wang
- Department of Chemistry and Biochemistry; and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
6
|
Whaley-Mayda L, Guha A, Tokmakoff A. Resonance conditions, detection quality, and single-molecule sensitivity in fluorescence-encoded infrared vibrational spectroscopy. J Chem Phys 2022; 156:174202. [DOI: 10.1063/5.0088435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fluorescence-encoded Infrared (FEIR) spectroscopy is a vibrational spectroscopy technique that has recently demonstrated the capability of single-molecule sensitivity in solution without near-field enhancement. This work explores the practical experimental factors that are required for successful FEIR measurements in both the single-molecule and bulk regimes. We investigate the role of resonance conditions by performing measurements on a series of coumarin fluorophores of varying electronic transition frequencies. To analyze variations in signal strength and signal to background between molecules, we introduce an FEIR brightness metric that normalizes out measurement-specific parameters. We find that the effect of the resonance condition on FEIR brightness can be reasonably well described by the electronic absorption spectrum. We discuss strategies for optimizing detection quality and sensitivity in bulk and single-molecule experiments.
Collapse
Affiliation(s)
| | - Abhirup Guha
- The University of Chicago, United States of America
| | - Andrei Tokmakoff
- Department of Chemistry, University of Chicago, United States of America
| |
Collapse
|