1
|
Shu Y, Truhlar DG. Generalized Semiclassical Ehrenfest Method: A Route to Wave Function-Free Photochemistry and Nonadiabatic Dynamics with Only Potential Energies and Gradients. J Chem Theory Comput 2024; 20:4396-4426. [PMID: 38819014 DOI: 10.1021/acs.jctc.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We reconsider recent methods by which direct dynamics calculations of electronically nonadiabatic processes can be carried out while requiring only adiabatic potential energies and their gradients. We show that these methods can be understood in terms of a new generalization of the well-known semiclassical Ehrenfest method. This is convenient because it eliminates the need to evaluate electronic wave functions and their matrix elements along the mixed quantum-classical trajectories. The new approximations and procedures enabling this advance are the curvature-driven approximation to the time-derivative coupling, the generalized semiclassical Ehrenfest method, and a new gradient correction scheme called the time-derivative matrix (TDM) scheme. When spin-orbit coupling is present, one can carry out dynamics calculations in the fully adiabatic basis using potential energies and gradients calculated without spin-orbit coupling plus the spin-orbit coupling matrix elements. Even when spin-orbit coupling is neglected, the method is useful because it allows calculations by electronic structure methods for which nonadiabatic coupling vectors are unavailable. In order to place the new considerations in context, the article starts out with a review of background material on trajectory surface hopping, the semiclassical Ehrenfest scheme, and methods for incorporating decoherence. We consider both internal conversion and intersystem crossing. We also review several examples from our group of successful applications of the curvature-driven approximation.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
2
|
Liu XY, Wang SR, Fang WH, Cui G. Nuclear Quantum Effects on Nonadiabatic Dynamics of a Green Fluorescent Protein Chromophore Analogue: Ring-Polymer Surface-Hopping Simulation. J Chem Theory Comput 2024; 20:3426-3439. [PMID: 38656202 DOI: 10.1021/acs.jctc.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein, we have used the "on-the-fly" ring-polymer surface-hopping simulation method with the centroid approximation (RPSH-CA), in combination with the multireference OM2/MRCI electronic structure calculations to study the photoinduced dynamics of a green fluorescent protein (GFP) chromophore analogue in the gas phase, i.e., o-HBI, at 50, 100, and 300 K with 1, 5, 10, and 15 beads (3600 1 ps trajectories). The electronic structure calculations identified five new minimum-energy conical intersection (MECI) structures, which, together with the previous one, play crucial roles in the excited-state decay dynamics of o-HBI. It is also found that the excited-state intramolecular proton transfer (ESIPT) occurs in an ultrafast manner and is completed within 20 fs in all the simulation conditions because there is no barrier associated with this ESIPT process in the S1 state. However, the other excited-state dynamical results are strongly related to the number of beads. At 50 and 100 K, the nuclear quantum effects (NQEs) are very important; therefore, the excited-state dynamical results change significantly with the bead number. For example, the S1 decay time deduced from time-dependent state populations becomes longer as the bead number increases. Nevertheless, an essentially convergent trend is observed when the bead number is close to 10. In contrast, at 300 K, the NQEs become weaker and the above dynamical results converge very quickly even with 1 bead. Most importantly, the NQEs seriously affect the excited-state decay mechanism of o-HBI. At 50 and 100 K, most trajectories decay to the S0 state via perpendicular keto MECIs, whereas, at 300 K, only twisted keto MECIs are responsible for the excited-state decay. The present work not only comprehensively explores the temperature-dependent photoinduced dynamics of o-HBI, but also demonstrates the importance and necessity of NQEs in nonadiabatic dynamics simulations, especially at relatively low temperatures.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Sheng-Rui Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
4
|
Talbot JJ, Arias-Martinez JE, Cotton SJ, Head-Gordon M. Fantastical excited state optimized structures and where to find them. J Chem Phys 2023; 159:171102. [PMID: 37916588 DOI: 10.1063/5.0172015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The quantum chemistry community has developed analytic forces for approximate electronic excited states to enable walking on excited state potential energy surfaces (PES). One can thereby computationally characterize excited state minima and saddle points. Always implicit in using this machinery is the fact that an excited state PES only exists within the realm of the Born-Oppenheimer approximation, where the nuclear and electronic degrees of freedom separate. This work demonstrates through ab initio calculations and simple nonadiabatic dynamics that some excited state minimum structures are fantastical: they appear to exist as stable configurations only as a consequence of the PES construct, rather than being physically observable. Each fantastical structure exhibits an unphysically high predicted harmonic frequency and associated force constant. This fact can serve as a valuable diagnostic of when an optimized excited state structure is non-observable. The origin of this phenomenon can be attributed to the coupling between different electronic states. As PESs approach one another, the upper surface can form a minimum that is very close to a near-touching point. The force constant, evaluated at this minimum, relates to the strength of the electronic coupling rather than to any characteristic excited state vibration. Nonadiabatic dynamics results using a Landau-Zener model illustrate that fantastical excited state structures have extremely short lifetimes on the order of a few femtoseconds. Their appearance in a calculation signals the presence of a nearby conical intersection through which the system will rapidly cross to a lower surface.
Collapse
Affiliation(s)
- Justin J Talbot
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Juan E Arias-Martinez
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Cotton
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Zhao X, Merritt ICD, Lei R, Shu Y, Jacquemin D, Zhang L, Xu X, Vacher M, Truhlar DG. Nonadiabatic Coupling in Trajectory Surface Hopping: Accurate Time Derivative Couplings by the Curvature-Driven Approximation. J Chem Theory Comput 2023; 19:6577-6588. [PMID: 37772732 DOI: 10.1021/acs.jctc.3c00813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Trajectory surface hopping (TSH) is a widely used mixed quantum-classical dynamics method that is used to simulate molecular dynamics with multiple electronic states. In TSH, time-derivative coupling is employed to propagate the electronic coefficients and in that way to determine when the electronic state on which the nuclear trajectory is propagated switches. In this work, we discuss nonadiabatic TSH dynamics algorithms employing the curvature-driven approximation and overlap-based time derivative couplings, and we report test calculations on six photochemical reactions where we compare the results to one another and to calculations employing analytic nonadiabatic coupling vectors. We correct previous published results thanks to a bug found in the software. We also provide additional, more detailed studies of the time-derivative couplings. Our results show good agreement between curvature-driven algorithms and overlap-based algorithms.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | | | - Ruiqing Lei
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China
| | - Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xuefei Xu
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China
- Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
6
|
Yin BW, Wang JL, Xue PJ, Zhang TS, Xie BB, Shen L, Fang WH. Understanding the Excited-State Relaxation Mechanisms of Xanthophyll Lutein by Multi-configurational Electronic Structure Calculations. J Chem Inf Model 2023; 63:4679-4690. [PMID: 37489739 DOI: 10.1021/acs.jcim.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The contradictory behaviors in light harvesting and non-photochemical quenching make xanthophyll lutein the most attractive functional molecule in photosynthesis. Despite several theoretical simulations on the spectral properties and excited-state dynamics, the atomic-level photophysical mechanisms need to be further studied and established, especially for an accurate description of geometric and electronic structures of conical intersections for the lowest several electronic states of lutein. In the present work, semiempirical OM2/MRCI and multi-configurational restricted active space self-consistent field methods were performed to optimize the minima and conical intersections in and between the 1Ag-, 2Ag-, 1Bu+, and 1Bu- states. Meanwhile, the relative energies were refined by MS-CASPT2(10,8)/6-31G*, which can reproduce correct electronic state properties as those in the spectroscopic experiments. Based on the above calculation results, we proposed a possible excited-state relaxation mechanism for lutein from its initially populated 1Bu+ state. Once excited to the optically bright 1Bu+ state, the system will propagate along the key reaction coordinate, i.e., the stretching vibration of the conjugated carbon chain. During this period of time, the 1Bu- state will participate in and forms a resonance state between the 1Bu- and 1Bu+ states. Later, the system will rapidly hop to the 2Ag- state via the 1Bu+/2Ag- conical intersection. Finally, the lutein molecule will survive in the 2Ag- state for a relatively long time before it internally converts to the ground state directly or via a twisted S1/S0 conical intersection. Notably, though the photophysical picture may be very different in solvents and proteins, the current theoretical study proposed a promising calculation protocol and also provided many valuable mechanistic insights for lutein and similar carotenoids.
Collapse
Affiliation(s)
- Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231 Zhejiang, P. R. China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231 Zhejiang, P. R. China
| | - Pu-Jie Xue
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231 Zhejiang, P. R. China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
7
|
Shu Y, Zhang L, Wu D, Chen X, Sun S, Truhlar DG. New Gradient Correction Scheme for Electronically Nonadiabatic Dynamics Involving Multiple Spin States. J Chem Theory Comput 2023; 19:2419-2429. [PMID: 37079755 DOI: 10.1021/acs.jctc.2c01173] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
It has been recommended that the best representation to use for trajectory surface hopping (TSH) calculations is the fully adiabatic basis in which the Hamiltonian is diagonal. Simulations of intersystem crossing processes with conventional TSH methods require an explicit computation of nonadiabatic coupling vectors (NACs) in the molecular-Coulomb-Hamiltonian (MCH) basis, also called the spin-orbit-free basis, in order to compute the gradient in the fully adiabatic basis (also called the diagonal representation). This explicit requirement destroys some of the advantages of the overlap-based algorithms and curvature-driven algorithms that can be used for the most efficient TSH calculations. Therefore, although these algorithms allow one to perform NAC-free simulations for internal conversion processes, one still requires NACs for intersystem crossing. Here, we show that how the NAC requirement is circumvented by a new computation scheme called the time-derivative-matrix scheme.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dihua Wu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
8
|
Tang D, Jia L, Shen L, Fang WH. Fewest-Switches Surface Hopping with Long Short-Term Memory Networks. J Phys Chem Lett 2022; 13:10377-10387. [PMID: 36317657 DOI: 10.1021/acs.jpclett.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mixed quantum-classical dynamical simulation is essential for studying nonadiabatic phenomena in photophysics and photochemistry. In recent years, many machine learning models have been developed to accelerate the time evolution of the nuclear subsystem. Herein, we implement long short-term memory (LSTM) networks as a propagator to accelerate the time evolution of the electronic subsystem during the fewest-switches surface hopping (FSSH) simulations. A small number of reference trajectories are generated using the original FSSH method, and then the LSTM networks can be built, accompanied by careful examination of typical LSTM-FSSH trajectories that employ the same initial condition and random numbers as the corresponding reference. The constructed network is applied to FSSH to further produce a trajectory ensemble to reveal the mechanism of nonadiabatic processes. Taking Tully's three models as test systems, we qualitatively reproduced the collective results. This work demonstrates that LSTM can be applied to the most popular surface hopping simulations.
Collapse
Affiliation(s)
- Diandong Tang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Luyang Jia
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai 265505, Shandong, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai 265505, Shandong, China
| |
Collapse
|