1
|
Roy T, Satpati S, Sinjari A, Anoop A, Thimmakondu VS, Ghosal S. Energetic and Spectroscopic Properties of Astrophysically Relevant MgC 4H Radicals Using High-Level Ab Initio Calculations. J Phys Chem A 2024; 128:1466-1476. [PMID: 38364260 DOI: 10.1021/acs.jpca.3c06828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Considering the importance of magnesium-bearing hydrocarbon molecules (MgCnH; n = 2, 4, and 6) in the carbon-rich circumstellar envelopes (e.g., IRC+10216), a total of 28 constitutional isomers of MgC4H have been theoretically investigated using density functional theory (DFT) and coupled-cluster methods. The zero-point vibrational energy corrected relative energies at the ROCCSD(T)/cc-pCVTZ level of theory reveal that the linear isomer, 1-magnesapent-2,4-diyn-1-yl (1, 2Σ+), is the global minimum geometry on the MgC4H potential energy surface. The latter has been detected both in the laboratory and in the evolved carbon star, IRC+10216. The calculated spectroscopic data for 1 match well with the experimental observations (error ∼ 0.78%) which validates our theoretical methodology. Plausible isomerization processes happening among different isomers are examined using DFT and coupled-cluster methods. CASPT2 calculations have been performed for a few isomers exhibiting multireference characteristics. The second most stable isomer, 1-ethynyl-1λ3-magnesacycloprop-2-ene-2,3-diyl (2, 2A1, μ = 2.54 D), is 146 kJ mol-1 higher in energy than 1 and possibly the next promising candidate to be detected in the laboratory or in the interstellar medium in future.
Collapse
Affiliation(s)
- Tarun Roy
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| | - Sayon Satpati
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| | - Aland Sinjari
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
- Nuclear Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Subhas Ghosal
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| |
Collapse
|
2
|
Thimmakondu VS, Karton A. CCSD(T) Rotational Constants for Highly Challenging C 5H 2 Isomers-A Comparison between Theory and Experiment. Molecules 2023; 28:6537. [PMID: 37764314 PMCID: PMC10537648 DOI: 10.3390/molecules28186537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
We evaluate the accuracy of CCSD(T) and density functional theory (DFT) methods for the calculation of equilibrium rotational constants (Ae, Be, and Ce) for four experimentally detected low-lying C5H2 isomers (ethynylcyclopropenylidene (2), pentatetraenylidene (3), ethynylpropadienylidene (5), and 2-cyclopropen-1-ylidenethenylidene (8)). The calculated rotational constants are compared to semi-experimental rotational constants obtained by converting the vibrationally averaged experimental rotational constants (A0, B0, and C0) to equilibrium values by subtracting the vibrational contributions (calculated at the B3LYP/jun-cc-pVTZ level of the theory). The considered isomers are closed-shell carbenes, with cumulene, acetylene, or strained cyclopropene moieties, and are therefore highly challenging from an electronic structure point of view. We consider both frozen-core and all-electron CCSD(T) calculations, as well as a range of DFT methods. We find that calculating the equilibrium rotational constants of these C5H2 isomers is a difficult task, even at the CCSD(T) level. For example, at the all-electron CCSD(T)/cc-pwCVTZ level of the theory, we obtain percentage errors ≤0.4% (Ce of isomer 3, Be and Ce of isomer 5, and Be of isomer 8) and 0.9-1.5% (Be and Ce of isomer 2, Ae of isomer 5, and Ce of isomer 8), whereas for the Ae rotational constant of isomers 2 and 8 and Be rotational constant of isomer 3, high percentage errors above 3% are obtained. These results highlight the challenges associated with calculating accurate rotational constants for isomers with highly challenging electronic structures, which is further complicated by the need to convert vibrationally averaged experimental rotational constants to equilibrium values. We use our best CCSD(T) rotational constants (namely, ae-CCSD(T)/cc-pwCVTZ for isomers 2 and 5, and ae-CCSD(T)/cc-pCVQZ for isomers 3 and 8) to evaluate the performance of DFT methods across the rungs of Jacob's Ladder. We find that the considered pure functionals (BLYP-D3BJ, PBE-D3BJ, and TPSS-D3BJ) perform significantly better than the global and range-separated hybrid functionals. The double-hybrid DSD-PBEP86-D3BJ method shows the best overall performance, with percentage errors below 0.5% in nearly all cases.
Collapse
Affiliation(s)
- Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA
| | - Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
3
|
The structure, stability, thermochemistry, and bonding in SO3-(H2O)n (n = 1–7) clusters: a computational analysis. Struct Chem 2022. [DOI: 10.1007/s11224-022-02085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Roy T, Thimmakondu VS, Ghosal S. New Carbenes and Cyclic Allenes Energetically Comparable to Experimentally Known 1-Azulenylcarbene. ACS OMEGA 2022; 7:30149-30160. [PMID: 36061723 PMCID: PMC9435053 DOI: 10.1021/acsomega.2c03224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
1-Azulenylcarbene (18; 0 kJ mol-1) is experimentally known as the key reactive intermediate for the rearrangement reactions of aryl carbenes in the laboratory. Here, using coupled-cluster methods up to the fc-CCSD(T)/cc-pVTZ//fc-CCSD(T)/cc-pVDZ level, thirteen new carbenes and one new cyclic allene are theoretically identified within the C11H8 elemental composition that either energetically lie below or very close to 18. While the cyclic allene, bicyclo[5.4.0]undeca-2,3,5,7,9,11-hexene (1; -166 kJ mol-1), is the experimentally known lowest energy isomer, three other cyclic allenes, bicyclo[5.4.0]undeca-1,2,4,6,8,10-hexene (2; -100 kJ mol-1), bicyclo[5.4.0]undeca-1,3,4,6,8,10-hexene (3; -97 kJ mol-1), and bicyclo[6.3.0]undeca-1,2,4,6,8,10-hexene (13; -42 kJ mol-1), demand new experimental studies. In total, thirty-one isomers are studied in this work (within -166 to +15 kJ mol-1 from 18) and all are found to be polar (μ ≠ 0). Among these, 1H-benzo[7]annulen-1-ylidene (17; -4 kJ mol-1; μ = 5.24 D), bicyclo[5.4.0]undeca-2,4,6,8,11-pentaene-10-ylidene (24; 13 kJ mol-1; μ = 7.59 D), 5-methylene-naphthalen-1-ylidene (26; 15 kJ mol-1; μ = 5.32 D), 6-methylene-naphthalen-2-ylidene (27; -43 kJ mol-1; μ = 6.60 D), and 8-methylene-naphthalen-2-ylidene (28; -39 kJ mol-1; μ = 5.55 D) are competitively polar compared to 18 (μ = 5.39 D). Therefore, these carbene molecules are potential targets for rotational spectroscopists and radioastronomers. Considering the importance of naphthyl and azulenylcarbenes in reactive intermediate chemistry, mechanisms of different rearrangement reactions and plausible formation pathways of some of these new carbenes are studied in this work using density functional theory.
Collapse
Affiliation(s)
- Tarun Roy
- Department
of Chemistry, National Institute of Technology
Durgapur, M G Avenue, Durgapur 713
209, India
| | - Venkatesan S. Thimmakondu
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182-1030, United States
| | - Subhas Ghosal
- Department
of Chemistry, National Institute of Technology
Durgapur, M G Avenue, Durgapur 713
209, India
| |
Collapse
|
5
|
Panda S, Sivadasan D, Job N, Sinjari A, Thirumoorthy K, Anoop A, Thimmakondu VS. Why Are MgC 3H Isomers Missing in the Interstellar Medium? J Phys Chem A 2022; 126:4465-4475. [PMID: 35767462 PMCID: PMC9382639 DOI: 10.1021/acs.jpca.2c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Considering the recent findings of linear doublet (2Σ+) MgCnH isomers (n = 2, 4, and 6) in the evolved carbon star IRC+10216, various structural isomers of MgC3H and MgC3H+ are theoretically investigated here. For MgC3H, 11 doublet and 8 quartet stationary points ranging from 0.0 to 71.8 and 0.0 to 110.1 kcal mol-1, respectively, have been identified initially at the UωB97XD/6-311++G(2d,2p) level. To get accurate relative energies, further energy evaluations are carried out for all isomers with coupled cluster methods and thermochemical modules such as G3//B3LYP, G4MP2, and CBS-QB3 methods. Unlike the even series, where the global minima are linear molecules with a Mg atom at one end, in the case of MgC3H, the global minimum geometry turns out to be a cyclic isomer, 2-magnesabicyclo[1.1.0]but-1,3,4-triyl (1, C2v, 2A1). In addition, five low-lying isomers, magnesium-substituted cyclopropenylidene (2, Cs, 2A'), 1-magnesabut-2,3-dien-1-yl-4-ylidene (3, Cs, 2A″), 1-magnesabut-2-yn-1-yl-4-ylidene (4, Cs, 2A″), 2λ3-magnesabicyclo[1.1.0]but-1,3-diyl-4-ylidene (5, C2v;, 2A1), and 1-magnesabut-2,3-dien-2-yl-4-ylidene (6, C∞v, 2Σ+), were also identified. The doublet linear isomer of MgC3H, 1-magnesabutatrienyl (10, C∞v, 2Σ+) turns out to be a minimum but lies 54.1 kcal mol-1 above 1 at the ROCCSD(T)/cc-pVTZ level. The quartet (4Σ+) electronic state of 10 was also found to be a minimum, but it lies 8.0 kcal mol-1 above 1 at the same level. Among quartets, isomer 10 is the most stable molecule. The next quartet electronic state (of isomer 11) is 34.4 kcal mol-1 above 10, and all other quartet electronic states of other isomers are not energetically close to low-lying doublet isomers 2 to 6. Overall, the chemical space of MgC3H contains more cyclic isomers (1, 2, and 3) on the low-energy side unlike their even-numbered MgCnH counterparts (n = 2, 4, and 6). Though the quartet electronic state of 10 is linear, it is not the global minimum geometry on the MgC3H potential energy surface. Isomerization pathways among the low-lying isomers (doublets of 1-4 and a quartet of 10) reveal that these molecules are kinetically stable. For the cation, MgC3H+, the cyclic isomers (1+, 2+, and 3+) are on the low-energy side. The singlet linear isomer, 10+, is a fourth-order saddle point. The low-lying cations are quite polar, with dipole moment values of >7.00 D. The current theoretical data would be helpful to both laboratory astrophysicists and radioastronomers for further studies on the MgC3H0/+ isomers.
Collapse
Affiliation(s)
- Sunanda Panda
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Devipriya Sivadasan
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Nisha Job
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Aland Sinjari
- School
of Mathematics, Biological, Exercise & Physical Sciences, San Diego Miramar College, San Diego, California 92126-2910, United States
| | - Krishnan Thirumoorthy
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Anakuthil Anoop
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Venkatesan S. Thimmakondu
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182-1030, United States
| |
Collapse
|