1
|
Luo Y, Yadav K, Kaiser R, Sun R. Theoretical Study of the Subsequent Decomposition Mechanisms of 1,1-Diamino-2,2-dinitroethene (FOX-7). J Comput Chem 2025; 46:e27542. [PMID: 39636215 DOI: 10.1002/jcc.27542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
This computational study focuses on the mechanism of the consecutive decomposition of FOX-7 and compares the results with recent experimental study [J. Phys. Chem. A 2023, 127, 7707] under 202 nm photolysis (592 kJ/mol). The mechanisms of forming these compounds, including cyanamide variants (HNCNH and NH2CN), hydroxylamine (NH2OH), nitrosamine (NH2NO), diaminoacetylene (H2NCCNH2), cyanogen (NCCN), water (H2O), ammonia (NH3), urea ((NH2)2CO), hydroxyurea (NH2C(O)NHOH), and formamide (NH2CHO), have only been speculated on without any energetic information previously. This study employed an unsupervised potential energy profile search protocol and ab initio molecular dynamics (AIMD) simulations to identify reaction pathways leading to these compounds. The calculations reveal that although some products (e.g., HNCNH, NH2CN, H2NCCNH2, and NCCN) can be formed via unimolecular decomposition, other products (e.g., NH2OH, NH2NO, H2O, NH3, (NH2)2CO, NH2C(O)NHOH, and NH2CHO) are energetically favored if they are formed via bimolecular recombination between unimolecular decomposition products or a product and a FOX-7 molecule.
Collapse
Affiliation(s)
- Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii, USA
| | - Komal Yadav
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii, USA
| | - Ralf Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii, USA
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii, USA
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
2
|
Yadav K, Luo Y, Kaiser RI, Sun R. Initial decomposition pathways of 1,1-diamino-2,2-dinitroethylene (α-FOX-7) in the condensed phase. Phys Chem Chem Phys 2024; 26:11395-11405. [PMID: 38572584 DOI: 10.1039/d4cp00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The initial decomposition pathways of α-FOX-7 in the condensed phase (crystal) were investigated via density functional theory. Calculations were carried out using three FOX-7 systems with increasing complexity from 1-layer (sheet) via 2-layer (surface) to 3-layer (bulk). The encapsulated environment of the central α-FOX-7 molecule, where decomposition takes place, is reconstructed by neighbouring molecules following a crystal structure. A minimal number of neighbouring molecules that have an impact on the energetics of decomposition are identified among all surrounding molecules. The results show that the presence of intermolecular hydrogen bonds due to the encapsulated environment in the condensed phase decreases the sensitivity of α-FOX-7, i.e. it increases the barrier of decomposition, but it does not alter the initial decomposition pathways of the reaction compared to the gas phase. Moreover, increasing the complexity of the system from a single gas phase molecule via sheet and surface to bulk increases the decomposition barriers. The calculations reveal a remarkable agreement with experimental data [A. M. Turner, Y. Luo, J. H. Marks, R. Sun, J. T. Lechner, T. M. Klapötke and R. I. Kaiser, Exploring the Photochemistry of Solid 1, 1-Diamino-2, 2-Dinitroethylene (FOX-7) Spanning Simple Bon Ruptures, Nitro-to-Nitrite Isomerization, and Nonadiabatic Dynamics, J. Phys. Chem. A, 2022, 126, 29, 4747-4761] and suggest that the initial decomposition of α-FOX-7 likely takes place at the surface of the crystal.
Collapse
Affiliation(s)
- Komal Yadav
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA.
| | - Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA.
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, HI 96822, USA
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
3
|
Turner AM, Marks JH, Lechner JT, Klapötke TM, Sun R, Kaiser RI. Ultraviolet-Initiated Decomposition of Solid 1,1-Diamino-2,2-dinitroethylene (FOX-7). J Phys Chem A 2023; 127:7707-7717. [PMID: 37682229 DOI: 10.1021/acs.jpca.3c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
FOX-7 (1,1-diamino-2,2-dinitroethylene) was photolyzed with 202 nm photons to probe reaction energies, leading to the decomposition of this energetic material and to compare results from irradiations using lower-energy 532 and 355 nm photons as well as higher-energy electrons. The photolysis occurred at 5 K to suppress thermal reactions, and the solid samples were monitored using Fourier transform infrared spectroscopy (FTIR), which observed carbon dioxide (CO2), carbon monoxide (CO), cyanide (CN-), and cyanate (OCN-) after irradiation. During warming to 300 K, subliming products were detected using electron-impact quadrupole mass spectrometry (EI-QMS) and photoionization time-of-flight mass spectrometry (PI-ReTOF-MS). Five products were observed in QMS: water (H2O), carbon monoxide (CO), nitric oxide (NO), carbon dioxide (CO2), and cyanogen (NCCN). The ReTOF-MS results showed overlap with electron irradiation products but also included three intermediates for the oxidation of ammonia and nitric oxide: hydroxylamine (NH2OH), nitrosamine (NH2NO), and the largest product at 76 amu with the proposed assignment of hydroxyurea (NH2C(O)NHOH). These results highlight the role of reactive oxygen intermediates and nitro-to-nitrite isomerization as key early reactions that lead to a diverse array of decomposition products.
Collapse
Affiliation(s)
- Andrew M Turner
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Jasmin T Lechner
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| |
Collapse
|
4
|
Turner AM, Marks JH, Luo Y, Lechner JT, Klapötke TM, Sun R, Kaiser RI. Electron-Induced Decomposition of Solid 1,1-Diamino-2,2-dinitroethylene (FOX-7) at Cryogenic Temperatures. J Phys Chem A 2023; 127:3390-3401. [PMID: 37027514 DOI: 10.1021/acs.jpca.3c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Solid FOX-7 (1,1-diamino-2,2-dinitroethylene), an energetic material of interest due to its high stability and low shock/thermal sensitivity, was exposed to energetic electrons at 5 K to explore the fundamental mechanisms leading to decomposition products and provide a better understanding of the reaction pathways involved. As a result of the radiation exposure, infrared spectroscopy revealed carbon dioxide (CO2) and carbon monoxide (CO) trapped in the FOX-7 matrix, while these compounds along with water (H2O), nitrogen monoxide (NO), and cyanogen (C2N2) were detected exploiting quadrupole mass spectrometry both during irradiation and during the warming phase from 5 to 300 K. Photoionization reflectron time-of-flight mass spectrometry detected small molecules such as ammonia (NH3), nitrogen monoxide (NO), and nitrogen dioxide (NO2) as well as more complex molecules up to 96 amu. Potential reaction pathways are presented and assignments are discussed. Among the reaction mechanisms, the importance of an initial nitro-to-nitrite isomerization is highlighted by the observed decomposition products.
Collapse
Affiliation(s)
- Andrew M Turner
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Jasmin T Lechner
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| |
Collapse
|
5
|
Fujioka K, Kaiser RI, Sun R. Unsupervised Reaction Pathways Search for the Oxidation of Hypergolic Ionic Liquids: 1-Ethyl-3-methylimidazolium Cyanoborohydride (EMIM +/CBH -) as a Case Study. J Phys Chem A 2023; 127:913-923. [PMID: 36574603 DOI: 10.1021/acs.jpca.2c07624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypergolic ionic liquids have come under increased study for having several desirable properties as a fuel source. One particular ionic liquid, 1-ethyl-3-methylimidazolium/cyanoborohydride (EMIM+/CBH-), and oxidant, nitric acid (HNO3), has been reported to be hypergolic experimentally, but its mechanism is not well-understood at a mechanistic level. In this computational study, the reaction is first probed with ab initio molecular dynamics simulations to confirm that anion-oxidant interactions likely are the first step in the mechanism. Second, the potential energy surface of the anion-oxidant system is studied with an in-depth search over possible isomerizations, and a network of possible intermediates are found. The critical point search is unsupervised and thus has the potential of identifying structures that deviate from chemical intuition. Molecular graphs are employed for analyzing 3000+ intermediates found, and nudged elastic band calculations are employed to identify transition states between them. Finally, the reactivity of the system is discussed through examination of minimal energy paths connecting the reactant to various common products from hypergolic ionic liquid oxidation. Eight products are reported for this system: NO, N2O, NO2, HNO, HONO, HNO2, HCN, and H2O. All reaction paths leading to these exothermic products have overall reaction barriers of 6-7 kcal/mol.
Collapse
Affiliation(s)
- Kazuumi Fujioka
- Department of Chemistry, The University of Hawai'i at Manoa, Honolulu, Hawaii96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, The University of Hawai'i at Manoa, Honolulu, Hawaii96822, United States
| | - Rui Sun
- Department of Chemistry, The University of Hawai'i at Manoa, Honolulu, Hawaii96822, United States
| |
Collapse
|
6
|
Luo Y, Kang C, Kaiser R, Sun R. The potential energy profile of the decomposition of 1,1-diamino-2,2-dinitroethylene (FOX-7) in the gas phase. Phys Chem Chem Phys 2022; 24:26836-26847. [DOI: 10.1039/d2cp03719j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The decomposition products of 1,1-diamino-2,2-dinitroethylene (FOX-7) in the gas phase.
Collapse
Affiliation(s)
- Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA
| | - Christopher Kang
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA
| | - Ralf Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, HI 96822, USA
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|