1
|
Styers WH, Zdanovskaia MA, Esselman BJ, Owen AN, Kougias SM, Billinghurst BE, Zhao J, McMahon RJ, Woods RC. Millimeter-Wave and High-Resolution Infrared Spectroscopy of 3-Furonitrile. J Phys Chem A 2024; 128:6084-6097. [PMID: 38916202 DOI: 10.1021/acs.jpca.4c03093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The rotational spectrum of 3-furonitrile has been collected from 85 to 500 GHz, spanning the most intense rotational transitions observable at room temperature. The large dipole moment imparted by the nitrile substituent confers substantial intensity to the rotational spectrum, enabling the observation of over 5600 new rotational transitions. Combined with previously published transitions, the available data set was least-squares fit to partial-octic, distorted-rotor A- and S-reduced Hamiltonian models with low statistical uncertainty (σfit < 0.031 MHz) for the ground vibrational state. Similar to its isomer 2-furonitrile, the two lowest-energy vibrationally excited states of 3-furonitrile (ν17, ν24), which correspond to the in-plane and out-of-plane nitrile bending vibrations, form an a- and b-axis Coriolis-coupled dyad. Rotationally resolved infrared transitions (30-600 cm-1) and over 4200 pure rotational transitions for both ν17 and ν24 were fit to a partial-octic, Coriolis-coupled, two-state Hamiltonian with low statistical uncertainty (σfit rot < 0.045 MHz, σfit IR < 6.1 MHz). The least-squares fitting of these vibrationally excited states provides their accurate and precise vibrational frequencies (ν17 = 168.193 164 8 (67) cm-1 and ν24 = 169.635 831 5 (77) cm-1) and seven Coriolis-coupling terms (Ga, GaJ, GaK, Fbc, FbcK, Gb, and Fac). The two fundamental states exhibit a notably small energy gap (1.442 667 (10) cm-1) and an inversion of the relative energies of ν17 and ν24 compared to those of the isomer 2-furonitrile. The rotational frequencies and spectroscopic constants of 3-furonitrile that we present herein provide a sufficient basis for conducting radioastronomical searches for this molecule across the majority of the frequency range available to current radiotelescopes.
Collapse
Affiliation(s)
- William H Styers
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Maria A Zdanovskaia
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian J Esselman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew N Owen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Samuel M Kougias
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brant E Billinghurst
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Jianbao Zhao
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Robert J McMahon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - R Claude Woods
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Jean DR, Wood SA, Esselman BJ, Woods RC, McMahon RJ. Rotational Spectroscopy of 1-Cyano-2-methylenecyclopropane (C 5H 5N)─A Newly Synthesized Pyridine Isomer. J Phys Chem A 2024; 128:1427-1437. [PMID: 38354365 DOI: 10.1021/acs.jpca.3c08002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The gas-phase rotational spectrum of 1-cyano-2-methylenecyclopropane (C1, C5H5N), an isomer of pyridine, is presented for the first time, covering the range from 235 to 500 GHz. Over 3600 a-, b-, and c-type transitions for the ground vibrational state have been assigned, measured, and least-squares fit to partial-octic A- and S-reduced distorted-rotor Hamiltonians with low statistical uncertainty (σfit = 42 kHz). Transitions for the two lowest-energy fundamental states (ν27 and ν26) and the lowest-energy overtone (2ν27) have been similarly measured, assigned, and least-squares fit to single-state Hamiltonians. Computed vibration-rotation interaction constants (B0-Bv) using the B3LYP and MP2 levels of theory are compared with the corresponding experimental values. Based upon our preliminary analysis, the next few vibrationally excited states form one or more complex polyads of interacting states via Coriolis and anharmonic coupling. The spectroscopic constants and transition frequencies presented here form the foundation for both future laboratory spectroscopy and astronomical searches for 1-cyano-2-methylenecyclopropane.
Collapse
Affiliation(s)
- Dairen R Jean
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Samuel A Wood
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Brian J Esselman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - R Claude Woods
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Robert J McMahon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| |
Collapse
|
3
|
Melosso M, Alessandrini S, Spada L, Melli A, Wang X, Zheng Y, Duan C, Li J, Du W, Gou Q, Bizzocchi L, Dore L, Barone V, Puzzarini C. Rotational spectra and semi-experimental structures of furonitrile and its water cluster. Phys Chem Chem Phys 2023; 25:31281-31291. [PMID: 37955344 DOI: 10.1039/d3cp03984f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Rotational spectroscopy represents an invaluable tool for several applications: from the identification of new molecules in interstellar objects to the characterization of van der Waals complexes, but also for the determination of very accurate molecular structures and for conformational analyses. In this work, we used high-resolution rotational spectroscopic techniques in combination with high-level quantum-chemical calculations to address all these aspects for two isomers of cyanofuran, namely 2-furonitrile and 3-furonitrile. In particular, we have recorded and analyzed the rotational spectra of both of them from 6 to 320 GHz; rotational transitions belonging to several singly-substituted isotopologues have been identified as well. The rotational constants derived in this way have been used in conjunction with computed rotation-vibration interaction constants in order to derive a semi-experimental equilibrium structure for both isomers. Moreover, we observed the rotational spectra of four different intermolecular adducts formed by furonitrile and water, whose identification has been supported by a conformational analysis and a theoretical spectroscopic characterization. A semi-experimental determination of the intermolecular parameters has been achieved for all of them and the results have been compared with those obtained for the analogous system formed by benzonitrile and water.
Collapse
Affiliation(s)
- Mattia Melosso
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Silvia Alessandrini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Lorenzo Spada
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Alessio Melli
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Xiujuan Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Chunguo Duan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Jiayi Li
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Weiping Du
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Luca Bizzocchi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Luca Dore
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|