1
|
Ghysbrecht S, Donati L, Keller BG. Accuracy of Reaction Coordinate Based Rate Theories for Modelling Chemical Reactions: Insights From the Thermal Isomerization in Retinal. J Comput Chem 2025; 46:e27529. [PMID: 39659054 PMCID: PMC11632214 DOI: 10.1002/jcc.27529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 12/12/2024]
Abstract
Modern potential energy surfaces have shifted attention to molecular simulations of chemical reactions. While various methods can estimate rate constants for conformational transitions in molecular dynamics simulations, their applicability to studying chemical reactions remains uncertain due to the high and sharp energy barriers and complex reaction coordinates involved. This study focuses on the thermal cis-trans isomerization in retinal, employing molecular simulations and comparing rate constant estimates based on one-dimensional rate theories with those based on sampling transitions and grid-based models for low-dimensional collective variable spaces. Even though each individual method to estimate the rate passes its quality tests, the rate constant estimates exhibit considerable disparities. Rate constant estimates based on one-dimensional reaction coordinates prove challenging to converge, even if the reaction coordinate is optimized. However, consistent estimates of the rate constant are achieved by sampling transitions and by multi-dimensional grid-based models.
Collapse
Affiliation(s)
- Simon Ghysbrecht
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
| | - Luca Donati
- Department of Mathematics and Computer ScienceFreie Universität BerlinBerlinGermany
- Modeling and Simulation of Complex ProcessesZuse Institute BerlinBerlinGermany
| | - Bettina G. Keller
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
| |
Collapse
|
2
|
Jones MS, Shmilovich K, Ferguson AL. Tutorial on Molecular Latent Space Simulators (LSSs): Spatially and Temporally Continuous Data-Driven Surrogate Dynamical Models of Molecular Systems. J Phys Chem A 2024; 128:10299-10317. [PMID: 39540914 DOI: 10.1021/acs.jpca.4c05389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The inherently serial nature and requirement for short integration time steps in the numerical integration of molecular dynamics (MD) calculations place strong limitations on the accessible simulation time scales and statistical uncertainties in sampling slowly relaxing dynamical modes and rare events. Molecular latent space simulators (LSSs) are a data-driven approach to learning a surrogate dynamical model of the molecular system from modest MD training trajectories that can generate synthetic trajectories at a fraction of the computational cost. The training data may comprise single long trajectories or multiple short, discontinuous trajectories collected over, for example, distributed computing resources. Provided the training data provide sufficient sampling of the relevant thermodynamic states and dynamical transitions to robustly learn the underlying microscopic propagator, an LSS furnishes a global model of the dynamics capable of producing temporally and spatially continuous molecular trajectories. Trained LSS models have produced simulation trajectories at up to 6 orders of magnitude lower cost than standard MD to enable dense sampling of molecular phase space and large reduction of the statistical errors in structural, thermodynamic, and kinetic observables. The LSS employs three deep learning architectures to solve three independent learning problems over the training data: (i) an encoding of the high-dimensional MD into a low-dimensional slow latent space using state-free reversible VAMPnets (SRVs), (ii) a propagator of the microscopic dynamics within the low-dimensional latent space using mixture density networks (MDNs), and (iii) a generative decoding of the low-dimensional latent coordinates back to the original high-dimensional molecular configuration space using conditional Wasserstein generative adversarial networks (cWGANs) or denoising diffusion probability models (DDPMs). In this software tutorial, we introduce the mathematical and numerical background and theory of LSS and present example applications of a user-friendly Python package software implementation to alanine dipeptide and a 28-residue beta-beta-alpha (BBA) protein within simple Google Colab notebooks.
Collapse
Affiliation(s)
- Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Kirill Shmilovich
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Zhang M, Wu H, Wang Y. Enhanced Sampling of Biomolecular Slow Conformational Transitions Using Adaptive Sampling and Machine Learning. J Chem Theory Comput 2024; 20:8569-8582. [PMID: 39301626 DOI: 10.1021/acs.jctc.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Biomolecular simulations often suffer from the "time scale problem", hindering the study of rare events occurring over extended time scales. Enhanced sampling techniques aim to alleviate this issue by accelerating conformational transitions, yet they typically necessitate well-defined collective variables (CVs), posing a significant challenge. Machine learning offers promising solutions but typically requires rich training data encompassing the entire free energy surface (FES). In this work, we introduce an automated iterative pipeline designed to mitigate these limitations. Our protocol first utilizes a CV-free count-based adaptive sampling method to generate a data set rich in rare events. From this data set, slow modes are identified using Koopman-reweighted time-lagged independent component analysis (KTICA), which are subsequently leveraged by on-the-fly probability enhanced sampling (OPES) to efficiently explore the FES. The effectiveness of our pipeline is demonstrated and further compared with the common Markov State Model (MSM) approach on two model systems with increasing complexity: alanine dipeptide (Ala2) and deca-alanine (Ala10), underscoring its applicability across diverse biomolecular simulations.
Collapse
Affiliation(s)
- Mingyuan Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hao Wu
- School of Mathematical Sciences, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Rydzewski J. Spectral Map for Slow Collective Variables, Markovian Dynamics, and Transition State Ensembles. J Chem Theory Comput 2024; 20. [PMID: 39265157 PMCID: PMC11428138 DOI: 10.1021/acs.jctc.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Understanding the behavior of complex molecular systems is a fundamental problem in physical chemistry. To describe the long-time dynamics of such systems, which is responsible for their most informative characteristics, we can identify a few slow collective variables (CVs) while treating the remaining fast variables as thermal noise. This enables us to simplify the dynamics and treat it as diffusion in a free-energy landscape spanned by slow CVs, effectively rendering the dynamics Markovian. Our recent statistical learning technique, spectral map [Rydzewski, J. J. Phys. Chem. Lett. 2023, 14(22), 5216-5220], explores this strategy to learn slow CVs by maximizing a spectral gap of a transition matrix. In this work, we introduce several advancements into our framework, using a high-dimensional reversible folding process of a protein as an example. We implement an algorithm for coarse-graining Markov transition matrices to partition the reduced space of slow CVs kinetically and use it to define a transition state ensemble. We show that slow CVs learned by spectral map closely approach the Markovian limit for an overdamped diffusion. We demonstrate that coordinate-dependent diffusion coefficients only slightly affect the constructed free-energy landscapes. Finally, we present how spectral maps can be used to quantify the importance of features and compare slow CVs with structural descriptors commonly used in protein folding. Overall, we demonstrate that a single slow CV learned by spectral map can be used as a physical reaction coordinate to capture essential characteristics of protein folding.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus
Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Schäfer JL, Keller BG. Implementation of Girsanov Reweighting in OpenMM and Deeptime. J Phys Chem B 2024; 128:6014-6027. [PMID: 38865491 PMCID: PMC11215775 DOI: 10.1021/acs.jpcb.4c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Classical molecular dynamics (MD) simulations provide invaluable insights into complex molecular systems but face limitations in capturing phenomena occurring on time scales beyond their reach. To bridge this gap, various enhanced sampling techniques have been developed, which are complemented by reweighting techniques to recover the unbiased dynamics. Girsanov reweighting is a reweighting technique that reweights simulation paths, generated by a stochastic MD integrator, without evoking an effective model of the dynamics. Instead, it calculates the relative path probability density at the time resolution of the MD integrator. Efficient implementation of Girsanov reweighting requires that the reweighting factors are calculated on-the-fly during the simulations and thus needs to be implemented within the MD integrator. Here, we present a comprehensive guide for implementing Girsanov reweighting into MD simulations. We demonstrate the implementation in the MD simulation package OpenMM by extending the library openmmtools. Additionally, we implemented a reweighted Markov state model estimator within the time series analysis package Deeptime.
Collapse
Affiliation(s)
- Joana-Lysiane Schäfer
- Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Bettina G. Keller
- Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
6
|
Wang D, Qiu Y, Beyerle ER, Huang X, Tiwary P. Information Bottleneck Approach for Markov Model Construction. J Chem Theory Comput 2024; 20:5352-5367. [PMID: 38859575 PMCID: PMC11199095 DOI: 10.1021/acs.jctc.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Markov state models (MSMs) have proven valuable in studying the dynamics of protein conformational changes via statistical analysis of molecular dynamics simulations. In MSMs, the complex configuration space is coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defining states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within the lag time. This process effectively coarse-grains time and space, integrating out rapid motions within metastable states. Thus, MSMs possess a multiresolution nature, where the granularity of states can be adjusted according to the time-resolution, offering flexibility in capturing system dynamics. This work introduces a continuous embedding approach for molecular conformations using the state predictive information bottleneck (SPIB), a framework that unifies dimensionality reduction and state space partitioning via a continuous, machine learned basis set. Without explicit optimization of the VAMP-based scores, SPIB demonstrates state-of-the-art performance in identifying slow dynamical processes and constructing predictive multiresolution Markovian models. Through applications to well-validated mini-proteins, SPIB showcases unique advantages compared to competing methods. It autonomously and self-consistently adjusts the number of metastable states based on a specified minimal time resolution, eliminating the need for manual tuning. While maintaining efficacy in dynamical properties, SPIB excels in accurately distinguishing metastable states and capturing numerous well-populated macrostates. This contrasts with existing VAMP-based methods, which often emphasize slow dynamics at the expense of incorporating numerous sparsely populated states. Furthermore, SPIB's ability to learn a low-dimensional continuous embedding of the underlying MSMs enhances the interpretation of dynamic pathways. With these benefits, we propose SPIB as an easy-to-implement methodology for end-to-end MSM construction.
Collapse
Affiliation(s)
- Dedi Wang
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yunrui Qiu
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, United States
- Data Science Institute, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Eric R. Beyerle
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, United States
- Data Science Institute, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
- University of Maryland Institute for Health Computing, Bethesda, MD 20852, United States
| |
Collapse
|
7
|
Ghysbrecht S, Keller BG. Thermal isomerization rates in retinal analogues using Ab-Initio molecular dynamics. J Comput Chem 2024; 45:1390-1403. [PMID: 38414274 DOI: 10.1002/jcc.27332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
For a detailed understanding of chemical processes in nature and industry, we need accurate models of chemical reactions in complex environments. While Eyring transition state theory is commonly used for modeling chemical reactions, it is most accurate for small molecules in the gas phase. A wide range of alternative rate theories exist that can better capture reactions involving complex molecules and environmental effects. However, they require that the chemical reaction is sampled by molecular dynamics simulations. This is a formidable challenge since the accessible simulation timescales are many orders of magnitude smaller than typical timescales of chemical reactions. To overcome these limitations, rare event methods involving enhanced molecular dynamics sampling are employed. In this work, thermal isomerization of retinal is studied using tight-binding density functional theory. Results from transition state theory are compared to those obtained from enhanced sampling. Rates obtained from dynamical reweighting using infrequent metadynamics simulations were in close agreement with those from transition state theory. Meanwhile, rates obtained from application of Kramers' rate equation to a sampled free energy profile along a torsional dihedral reaction coordinate were found to be up to three orders of magnitude higher. This discrepancy raises concerns about applying rate methods to one-dimensional reaction coordinates in chemical reactions.
Collapse
Affiliation(s)
- Simon Ghysbrecht
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Bettina G Keller
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Keller BG, Bolhuis PG. Dynamical Reweighting for Biased Rare Event Simulations. Annu Rev Phys Chem 2024; 75:137-162. [PMID: 38941527 DOI: 10.1146/annurev-physchem-083122-124538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Dynamical reweighting techniques aim to recover the correct molecular dynamics from a simulation at a modified potential energy surface. They are important for unbiasing enhanced sampling simulations of molecular rare events. Here, we review the theoretical frameworks of dynamical reweighting for modified potentials. Based on an overview of kinetic models with increasing level of detail, we discuss techniques to reweight two-state dynamics, multistate dynamics, and path integrals. We explore the natural link to transition path sampling and how the effect of nonequilibrium forces can be reweighted. We end by providing an outlook on how dynamical reweighting integrates with techniques for optimizing collective variables and with modern potential energy surfaces.
Collapse
Affiliation(s)
- Bettina G Keller
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany;
| | - Peter G Bolhuis
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Herringer NSM, Dasetty S, Gandhi D, Lee J, Ferguson AL. Permutationally Invariant Networks for Enhanced Sampling (PINES): Discovery of Multimolecular and Solvent-Inclusive Collective Variables. J Chem Theory Comput 2024; 20:178-198. [PMID: 38150421 DOI: 10.1021/acs.jctc.3c00923] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The typically rugged nature of molecular free-energy landscapes can frustrate efficient sampling of the thermodynamically relevant phase space due to the presence of high free-energy barriers. Enhanced sampling techniques can improve phase space exploration by accelerating sampling along particular collective variables (CVs). A number of techniques exist for the data-driven discovery of CVs parametrizing the important large-scale motions of the system. A challenge to CV discovery is learning CVs invariant to the symmetries of the molecular system, frequently rigid translation, rigid rotation, and permutational relabeling of identical particles. Of these, permutational invariance has proved a persistent challenge in frustrating the data-driven discovery of multimolecular CVs in systems of self-assembling particles and solvent-inclusive CVs for solvated systems. In this work, we integrate permutation invariant vector (PIV) featurizations with autoencoding neural networks to learn nonlinear CVs invariant to translation, rotation, and permutation and perform interleaved rounds of CV discovery and enhanced sampling to iteratively expand the sampling of configurational phase space and obtain converged CVs and free-energy landscapes. We demonstrate the permutationally invariant network for enhanced sampling (PINES) approach in applications to the self-assembly of a 13-atom argon cluster, association/dissociation of a NaCl ion pair in water, and hydrophobic collapse of a C45H92 n-pentatetracontane polymer chain. We make the approach freely available as a new module within the PLUMED2 enhanced sampling libraries.
Collapse
Affiliation(s)
| | - Siva Dasetty
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Diya Gandhi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Junhee Lee
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Oh M, da Hora GCA, Swanson JMJ. tICA-Metadynamics for Identifying Slow Dynamics in Membrane Permeation. J Chem Theory Comput 2023; 19:8886-8900. [PMID: 37943658 PMCID: PMC11282584 DOI: 10.1021/acs.jctc.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Molecular simulations are commonly used to understand the mechanism of membrane permeation of small molecules, particularly for biomedical and pharmaceutical applications. However, despite significant advances in computing power and algorithms, calculating an accurate permeation free energy profile remains elusive for many drug molecules because it can require identifying the rate-limiting degrees of freedom (i.e., appropriate reaction coordinates). To resolve this issue, researchers have developed machine learning approaches to identify slow system dynamics. In this work, we apply time-lagged independent component analysis (tICA), an unsupervised dimensionality reduction algorithm, to molecular dynamics simulations with well-tempered metadynamics to find the slowest collective degrees of freedom of the permeation process of trimethoprim through a multicomponent membrane. We show that tICA-metadynamics yields translational and orientational collective variables (CVs) that increase convergence efficiency ∼1.5 times. However, crossing the periodic boundary is shown to introduce artifacts in the translational CV that can be corrected by taking absolute values of molecular features. Additionally, we find that the convergence of the tICA CVs is reached with approximately five membrane crossings and that data reweighting is required to avoid deviations in the translational CV.
Collapse
Affiliation(s)
- Myongin Oh
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| | - Gabriel C A da Hora
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Ray D, Parrinello M. Kinetics from Metadynamics: Principles, Applications, and Outlook. J Chem Theory Comput 2023; 19:5649-5670. [PMID: 37585703 DOI: 10.1021/acs.jctc.3c00660] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Metadynamics is a popular enhanced sampling algorithm for computing the free energy landscape of rare events by using molecular dynamics simulation. Ten years ago, Tiwary and Parrinello introduced the infrequent metadynamics approach for calculating the kinetics of transitions across free energy barriers. Since then, metadynamics-based methods for obtaining rate constants have attracted significant attention in computational molecular science. Such methods have been applied to study a wide range of problems, including protein-ligand binding, protein folding, conformational transitions, chemical reactions, catalysis, and nucleation. Here, we review the principles of elucidating kinetics from metadynamics-like approaches, subsequent methodological developments in this area, and successful applications on chemical, biological, and material systems. We also highlight the challenges of reconstructing accurate kinetics from enhanced sampling simulations and the scope of future developments.
Collapse
Affiliation(s)
- Dhiman Ray
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Michele Parrinello
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| |
Collapse
|
12
|
Oh M, da Hora GCA, Swanson JMJ. tICA-Metadynamics for Identifying Slow Dynamics in Membrane Permeation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553477. [PMID: 37645884 PMCID: PMC10462029 DOI: 10.1101/2023.08.16.553477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Molecular simulations are commonly used to understand the mechanism of membrane permeation of small molecules, particularly for biomedical and pharmaceutical applications. However, despite significant advances in computing power and algorithms, calculating an accurate permeation free energy profile remains elusive for many drug molecules because it can require identifying the rate-limiting degrees of freedom (i.e., appropriate reaction coordinates). To resolve this issue, researchers have developed machine learning approaches to identify slow system dynamics. In this work, we apply time-lagged independent component analysis (tICA), an unsupervised dimensionality reduction algorithm, to molecular dynamics simulations with well-tempered metadynamics to find the slowest collective degrees of freedom of the permeation process of trimethoprim through a multicomponent membrane. We show that tICA-metadynamics yields translational and orientational collective variables (CVs) that increase convergence efficiency ∼1.5 times. However, crossing the periodic boundary is shown to introduce artefacts in the translational CV that can be corrected by taking absolute values of molecular features. Additionally, we find that the convergence of the tICA CVs is reached with approximately five membrane crossings, and that data reweighting is required to avoid deviations in the translational CV.
Collapse
|