1
|
Daniely A, Wannenmacher A, Levy N, Sheffer O, Joseph E, Kostko O, Ahmed M, Stein T. A Vacuum Ultraviolet Photoionization Mass Spectrometry and Density Functional Calculation Study of Formic Acid-Water Clusters. J Phys Chem A 2024. [PMID: 39046939 DOI: 10.1021/acs.jpca.4c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The interaction between formic acid (FA) and water (W) holds significant importance in various chemical processes. Our study combines vacuum-ultraviolet photoionization mass spectrometry with density functional calculations to investigate formic acid water clusters generated in supersonic molecular beams. The mass spectra obtained reveal the formation of protonated clusters as the major product. Enhanced intensities are observed in the mass spectra for a number of clusters holding the following composition, FA1W5H+, FA2W4H+, FA3W3H+, FA4W2H+, FA5W1H+ and FA6W2H+ compared to their neighbors with one less or one more water component. Our calculations shed light on these potentially stable structures, highlighting cyclic arrangements with molecules enclosed within the ring as the most stable structures, and demonstrate a decrease in the stability upon the addition of a water molecule. Comparing experimental appearance energies with calculated ionization energies suggests that fragmentation can occur from clusters of various sizes.
Collapse
Affiliation(s)
- Amit Daniely
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| | - Anna Wannenmacher
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nevo Levy
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| | - Omri Sheffer
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| | - Edwin Joseph
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tamar Stein
- The Fritz Haber Center for Molecular Dynamics, Department of Chemistry, The Hebrew University, Jerusalem 9190501, Israel
| |
Collapse
|
2
|
De S, Abid AR, Asmussen JD, Ben Ltaief L, Sishodia K, Ulmer A, Pedersen HB, Krishnan SR, Mudrich M. Fragmentation of water clusters formed in helium nanodroplets by charge transfer and Penning ionization. J Chem Phys 2024; 160:094308. [PMID: 38445733 DOI: 10.1063/5.0194098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Helium nanodroplets ("HNDs") are widely used for forming tailor-made clusters and molecular complexes in a cold, transparent, and weakly interacting matrix. The characterization of embedded species by mass spectrometry is often complicated by the fragmentation and trapping of ions in the HNDs. Here, we systematically study fragment ion mass spectra of HND-aggregated water and oxygen clusters following their ionization by charge transfer ionization ("CTI") and Penning ionization ("PEI"). While the efficiency of PEI of embedded clusters is lower than for CTI by about factor 10, both the mean sizes of detected water clusters and the relative yields of unprotonated cluster ions are significantly larger, making PEI a "soft ionization" scheme. However, the tendency of ions to remain bound to HNDs leads to a reduced detection efficiency for large HNDs containing >104 helium atoms. These results are instrumental in determining optimal conditions for mass spectrometry and photoionization spectroscopy of molecular complexes and clusters aggregated in HNDs.
Collapse
Affiliation(s)
- S De
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - A R Abid
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - J D Asmussen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - L Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - K Sishodia
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - A Ulmer
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - H B Pedersen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - S R Krishnan
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|