1
|
Classical trajectory studies of collisional energy transfer. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-444-64207-3.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
2
|
Di Liberto G, Conte R, Ceotto M. “Divide-and-conquer” semiclassical molecular dynamics: An application to water clusters. J Chem Phys 2018; 148:104302. [DOI: 10.1063/1.5023155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
3
|
Zhang H, Zhang X, Truhlar DG, Xu X. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory. J Phys Chem A 2017; 121:9033-9044. [PMID: 29095614 DOI: 10.1021/acs.jpca.7b09374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C6H6/C6D6 and D + C6H6/C6D6 kinetic isotope effects, and we compared our H + C6H6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology , Beijing 100029, P. R. China.,Center for Combustion Energy and Department of Thermal Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Xuefei Xu
- Center for Combustion Energy and Department of Thermal Engineering, Tsinghua University , Beijing 100084, P. R. China
| |
Collapse
|
4
|
Ceotto M, Di Liberto G, Conte R. Semiclassical "Divide-and-Conquer" Method for Spectroscopic Calculations of High Dimensional Molecular Systems. PHYSICAL REVIEW LETTERS 2017; 119:010401. [PMID: 28731742 DOI: 10.1103/physrevlett.119.010401] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 05/11/2023]
Abstract
A new semiclassical "divide-and-conquer" method is presented with the aim of demonstrating that quantum dynamics simulations of high dimensional molecular systems are doable. The method is first tested by calculating the quantum vibrational power spectra of water, methane, and benzene-three molecules of increasing dimensionality for which benchmark quantum results are available-and then applied to C_{60}, a system characterized by 174 vibrational degrees of freedom. Results show that the approach can accurately account for quantum anharmonicities, purely quantum features like overtones, and the removal of degeneracy when the molecular symmetry is broken.
Collapse
Affiliation(s)
- Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
5
|
Aieta C, Ceotto M. A quantum method for thermal rate constant calculations from stationary phase approximation of the thermal flux-flux correlation function integral. J Chem Phys 2017; 146:214115. [DOI: 10.1063/1.4984099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
6
|
Gabas F, Conte R, Ceotto M. On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum. J Chem Theory Comput 2017; 13:2378-2388. [PMID: 28489368 PMCID: PMC5472367 DOI: 10.1021/acs.jctc.6b01018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present an on-the-fly ab initio semiclassical study of vibrational
energy levels of glycine, calculated by Fourier transform of the wavepacket
correlation function. It is based on a multiple coherent states approach
integrated with monodromy matrix regularization for chaotic dynamics.
All four lowest-energy glycine conformers are investigated by means
of single-trajectory semiclassical spectra obtained upon classical
evolution of on-the-fly trajectories with harmonic zero-point energy.
For the most stable conformer I, direct dynamics trajectories are
also run for each vibrational mode with energy equal to the first
harmonic excitation. An analysis of trajectories evolved up to 50 000
atomic time units demonstrates that, in this time span, conformers
II and III can be considered as isolated species, while conformers
I and IV show a pretty facile interconversion. Therefore, previous
perturbative studies based on the assumption of isolated conformers
are often reliable but might be not completely appropriate in the
case of conformer IV and conformer I for which interconversion occurs
promptly.
Collapse
Affiliation(s)
- Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
7
|
Ling H, Xia M, Chen W, Chai Z, Wang D. Influence of denticity and combined soft–hard strategy on the interaction of picolinic-type ligands with NpO2+. RSC Adv 2017. [DOI: 10.1039/c6ra26114k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The denticity of the ligands and the combined hard–soft donor strategy work cooperatively in the coordination of NpO2+ with ligands.
Collapse
Affiliation(s)
- Hongcai Ling
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
- Multidisciplinary Initiative Center
| | - Miaoren Xia
- Multidisciplinary Initiative Center
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Wenkai Chen
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
- Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan
| | - Zhifang Chai
- Multidisciplinary Initiative Center
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Dongqi Wang
- Multidisciplinary Initiative Center
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| |
Collapse
|
8
|
Sun J, Shao Y, Wu W, Tang Y, Zhang Y, Hu Y, Liu J, Yi H, Chen F, Cheng Y. A quantum chemical study on ˙Cl-initiated atmospheric degradation of acrylonitrile. RSC Adv 2017. [DOI: 10.1039/c7ra01521f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degradation of acrylonitrile (CH2CHCN) by reaction with atomic chlorine was studied using quantum chemical methods.
Collapse
|
9
|
Houston PL, Conte R, Bowman JM. Roaming Under the Microscope: Trajectory Study of Formaldehyde Dissociation. J Phys Chem A 2016; 120:5103-14. [DOI: 10.1021/acs.jpca.6b00488] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul L. Houston
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14852, United States
| | - Riccardo Conte
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
- Dipartimento
di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Aieta C, Gabas F, Ceotto M. An Efficient Computational Approach for the Calculation of the Vibrational Density of States. J Phys Chem A 2016; 120:4853-62. [DOI: 10.1021/acs.jpca.5b12364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara Aieta
- Dipartimento
di Chimica, Università degli Studi di Milano, via C. Golgi
19, 20133 Milano, Italy
| | - Fabio Gabas
- Dipartimento
di Chimica, Università degli Studi di Milano, via C. Golgi
19, 20133 Milano, Italy
- CINECA - Interuniversity
Computing Center Supercomputing Applications and Innovation Department
- SCAI Via R. Sanzio, 4, 20090 Segrate, Milan, Italy
| | - Michele Ceotto
- Dipartimento
di Chimica, Università degli Studi di Milano, via C. Golgi
19, 20133 Milano, Italy
| |
Collapse
|
11
|
Conte R, Houston PL, Bowman JM. Trajectory and Model Studies of Collisions of Highly Excited Methane with Water Using an ab Initio Potential. J Phys Chem A 2015; 119:12304-17. [DOI: 10.1021/acs.jpca.5b06595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Riccardo Conte
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Paul L. Houston
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14852, United States
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|