1
|
Asatryan R, Hudzik J, Swihart M. Intramolecular Catalytic Hydrogen Atom Transfer (CHAT). J Phys Chem A 2024; 128:2169-2190. [PMID: 38451855 DOI: 10.1021/acs.jpca.3c06794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Intramolecular catalysis (IntraCat) is the acceleration of a process at one site of a molecule catalyzed by a functional group in the same molecule; an external agent such as a solvent typically facilitates it. Here, we report a general first-principles-based IntraCat mechanism, which strictly occurs within a single molecule with no coreagent being involved─we call it intramolecular catalytic transfer of hydrogen atoms (CHAT). A reactive part of a molecule (chat catalyst moiety or chat agent, represented by -OOH, -COOH, -SH, -CH2OH, -HPO4, or another bifunctional H-donor/acceptor group) catalyzes an interconversion process, such as keto-enol or amino-imino tautomerization, and cyclization in the same molecule, while being regenerated in the process. It can thus be regarded as an intramolecular version of the intermolecular H atom transfer processes mediated by an external molecular catalyst, e.g., dihydrogen, water, or a carboxylic acid. Earlier, we proposed a general mechanistic systematization of intermolecular processes, illustrated in the simplest case of the H2-mediated reactions classified as dihydrogen catalysis [Asatryan, R.; et al. Catal. Rev.: Sci. Eng., 2014, 56, 403-475]. Following this systematization, the CHAT catalysis belongs to the category of relay transfer of H atoms, albeit in an intramolecular manner. A broader class of intramolecular processes includes all types of H-transfer reactions stimulated by an H-migration, which we call self-catalyzed H atom transfer (SC-HAT). The CHAT mechanism comprises a subset of SC-HAT in which the catalytic moiety is regenerated (i.e., acts as a true catalyst and not a reagent). We provide several characteristic examples of CHAT mechanism based on detailed analysis of the corresponding potential energy surfaces. All such cases showed a dramatically reduced activation barrier relative to the corresponding uncatalyzed H-transfer reactions. For example, we show that CHAT can facilitate long-range H-migration in larger molecules and can occur multiple times in one molecule with multiple interconverting groups. It also facilitates amino-imino tautomerization of unsaturated GABA-analogues and peptides, as well as intramolecular cyclization processes to form heterocycles, e.g., oxygenated rings. CHAT pathways may also explain the pH-dependent increase of mutarotation rate of glucose-6-phosphate demonstrated in pioneering experiments that introduced the classical IntraCat concept. In addition, we identify a ground electronic state CHAT pathway as an alternative to the UV-promoted long-range molecular crane keto-enol conversion with a remarkably low activation energy. To initially assess the possible impact of the new keto-enol conversion pathway on combustion of n-alkanes, we present a detailed kinetic analysis of isomerization and decomposition of pentane-2,4-ketohydroperoxide (2,4-KHP). The results are compared with key alternative reactions, including direct dissociation and Korcek channels (for which a new alkyl group migration channel is also identified), revealing the competitiveness of the CHAT pathway across a range of conditions. Taken together, this work provides insight into a general class of reaction pathways that has not previously being systematically considered and that may occur in a broad range of contexts from combustion to atmospheric chemistry to biochemistry.
Collapse
Affiliation(s)
- Rubik Asatryan
- Department of Chemical and Biological Engineering, and Center for Hybrid Rocket Exascale Simulation Technology (CHREST), University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jason Hudzik
- Department of Chemical and Biological Engineering, and Center for Hybrid Rocket Exascale Simulation Technology (CHREST), University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mark Swihart
- Department of Chemical and Biological Engineering, and Center for Hybrid Rocket Exascale Simulation Technology (CHREST), University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
2
|
Martí C, Michelsen HA, Najm HN, Zádor J. Comprehensive Kinetics on the C 7H 7 Potential Energy Surface under Combustion Conditions. J Phys Chem A 2023; 127:1941-1959. [PMID: 36802584 DOI: 10.1021/acs.jpca.2c08035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The automated kinetics workflow code, KinBot, was used to explore and characterize the regions of the C7H7 potential energy surface that are relevant to combustion environments and especially soot inception. We first explored the lowest-energy region, which includes the benzyl, fulvenallene + H, and cyclopentadienyl + acetylene entry points. We then expanded the model to include two higher-energy entry points, vinylpropargyl + acetylene and vinylacetylene + propargyl. The automated search was able to uncover the pathways from the literature. In addition, three important new routes were discovered: a lower-energy pathway connecting benzyl with vinylcyclopentadienyl, a decomposition mechanism from benzyl that results in side-chain hydrogen atom loss to produce fulvenallene + H, and shorter and lower energy routes to the dimethylene-cyclopentenyl intermediates. We systematically reduced the extended model to a chemically relevant domain composed of 63 wells, 10 bimolecular products, 87 barriers, and 1 barrierless channel and constructed a master equation using the CCSD(T)-F12a/cc-pVTZ//ωB97X-D/6-311++G(d,p) level of theory to provide rate coefficients for chemical modeling. Our calculated rate coefficients show excellent agreement with measured ones. We also simulated concentration profiles and calculated branching fractions from the important entry points to provide an interpretation of this important chemical landscape.
Collapse
Affiliation(s)
- Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Hope A Michelsen
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Habib N Najm
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
3
|
Legg HN, Narkin KM, McCunn LR, Parish CA, Song X. Experimental and Theoretical Study of Oxolan-3-one Thermal Decomposition. J Phys Chem A 2022; 126:7084-7093. [PMID: 36194512 DOI: 10.1021/acs.jpca.2c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermal decomposition of oxolan-3-one, a common component of the bio-oil formed during biomass pyrolysis, has been studied using ab initio calculations and experiments employing pulsed gas-phase pyrolysis with matrix-isolation FTIR product detection. Four pathways for unimolecular decomposition were predicted using computational methods. The dominant reaction channel led to carbon monoxide, formaldehyde, and ethylene, all of which were observed experimentally. The other channels led to an assortment of products including ketene, water, propyne, and acetylene, which were all confirmed in the matrix-isolation FTIR spectra. There is also evidence for the production of substituted ketenes in pyrolysis, most likely hydroxyketene and methylketene.
Collapse
Affiliation(s)
- Heather N Legg
- Department of Chemistry, Marshall University, 1 John Marshall Drive, Huntington, West Virginia25755, United States
| | - Kathryn M Narkin
- Department of Chemistry, Marshall University, 1 John Marshall Drive, Huntington, West Virginia25755, United States
| | - Laura R McCunn
- Department of Chemistry, Marshall University, 1 John Marshall Drive, Huntington, West Virginia25755, United States
| | - Carol A Parish
- Department of Chemistry, University of Richmond Gottwald Center for the Sciences, Richmond, Virginia23173, United States
| | - Xinli Song
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei430071, China
| |
Collapse
|
4
|
Zaleski DP, Sivaramakrishnan R, Weller HR, Seifert NA, Bross DH, Ruscic B, Moore KB, Elliott SN, Copan AV, Harding LB, Klippenstein SJ, Field RW, Prozument K. Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm. J Am Chem Soc 2021; 143:3124-3142. [PMID: 33615780 DOI: 10.1021/jacs.0c11677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of high-fidelity mechanisms for chemically reactive systems is a challenging process that requires the compilation of rate descriptions for a large and somewhat ill-defined set of reactions. The present unified combination of modeling, experiment, and theory provides a paradigm for improving such mechanism development efforts. Here we combine broadband rotational spectroscopy with detailed chemical modeling based on rate constants obtained from automated ab initio transition state theory-based master equation calculations and high-level thermochemical parametrizations. Broadband rotational spectroscopy offers quantitative and isomer-specific detection by which branching ratios of polar reaction products may be obtained. Using this technique, we observe and characterize products arising from H atom substitution reactions in the flash pyrolysis of acetone (CH3C(O)CH3) at a nominal temperature of 1800 K. The major product observed is ketene (CH2CO). Minor products identified include acetaldehyde (CH3CHO), propyne (CH3CCH), propene (CH2CHCH3), and water (HDO). Literature mechanisms for the pyrolysis of acetone do not adequately describe the minor products. The inclusion of a variety of substitution reactions, with rate constants and thermochemistry obtained from automated ab initio kinetics predictions and Active Thermochemical Tables analyses, demonstrates an important role for such processes. The pathway to acetaldehyde is shown to be a direct result of substitution of acetone's methyl group by a free H atom, while propene formation arises from OH substitution in the enol form of acetone by a free H atom.
Collapse
Affiliation(s)
- Daniel P Zaleski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemistry, Colgate University, Hamilton, New York 13346, United States
| | - Raghu Sivaramakrishnan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hailey R Weller
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nathan A Seifert
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kevin B Moore
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andreas V Copan
- Emmanuel College, Natural Sciences Department, Franklin Springs, Georgia 30639, United States
| | - Lawrence B Harding
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert W Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kirill Prozument
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Kleimeier NF, Turner AM, Fortenberry RC, Kaiser RI. On the Formation of the Popcorn Flavorant 2,3-Butanedione (CH 3 COCOCH 3 ) in Acetaldehyde-Containing Interstellar Ices. Chemphyschem 2020; 21:1531-1540. [PMID: 32458552 DOI: 10.1002/cphc.202000116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/25/2020] [Indexed: 11/06/2022]
Abstract
Acetaldehyde (CH3 CHO) is ubiquitous throughout the interstellar medium and has been observed in cold molecular clouds, star forming regions, and in meteorites such as Murchison. As the simplest methyl-bearing aldehyde, acetaldehyde constitutes a critical precursor to prebiotic molecules such as the sugar deoxyribose and amino acids via the Strecker synthesis. In this study, we reveal the first laboratory detection of 2,3-butanedione (diacetyl, CH3 COCOCH3 ) - a butter and popcorn flavorant - synthesized within acetaldehyde-based interstellar analog ices exposed to ionizing radiation at 5 K. Detailed isotopic substitution experiments combined with tunable vacuum ultraviolet (VUV) photoionization of the subliming molecules demonstrate that 2,3-butanedione is formed predominantly via the barrier-less radical-radical reaction of two acetyl radicals (CH3 ĊO). These processes are of fundamental importance for a detailed understanding of how complex organic molecules (COMs) are synthesized in deep space thus constraining the molecular structures and complexity of molecules forming in extraterrestrial ices containing acetaldehyde through a vigorous galactic cosmic ray driven non-equilibrium chemistry.
Collapse
Affiliation(s)
- N Fabian Kleimeier
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| | - Andrew M Turner
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, 322 Coulter Hall, University, MS, 38677-1848, USA
| | - Ralf I Kaiser
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| |
Collapse
|
6
|
Sun Y, Li N, Xing X, Zhang X, Zhang Z, Wang G, Cheng J, Hao Z. Catalytic oxidation performances of typical oxygenated volatile organic compounds (acetone and acetaldehyde) over MAlO (M = Mn, Co, Ni, Fe) hydrotalcite-derived oxides. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem Rev 2019; 119:4471-4568. [DOI: 10.1021/acs.chemrev.8b00408] [Citation(s) in RCA: 769] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi He
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Xin Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Mark Douthwaite
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Samuel Pattisson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
8
|
Zhao C, Chi Y, Xiong Y, Yu Q, Wang X, Fan G, Yu K. The effects of H+, NH3OH+ and NH4+ on the thermal decomposition of bistetrazole N-oxide anion. Phys Chem Chem Phys 2019; 21:15215-15221. [DOI: 10.1039/c9cp02715g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) has attracted great interest as it breaks through the limitations of the traditional nitro group, high detonation velocity and moderate impact sensitivity.
Collapse
Affiliation(s)
- Chuande Zhao
- Institute of Chemical Materials
- China Academy of Engineering Physics (CAEP)
- Mianyang
- People's Republic of China
| | - Yu Chi
- Institute of Chemical Materials
- China Academy of Engineering Physics (CAEP)
- Mianyang
- People's Republic of China
| | - Ying Xiong
- Institute of Chemical Materials
- China Academy of Engineering Physics (CAEP)
- Mianyang
- People's Republic of China
| | - Qian Yu
- Institute of Chemical Materials
- China Academy of Engineering Physics (CAEP)
- Mianyang
- People's Republic of China
| | - Xinfeng Wang
- Institute of Chemical Materials
- China Academy of Engineering Physics (CAEP)
- Mianyang
- People's Republic of China
| | - Guijuan Fan
- Institute of Chemical Materials
- China Academy of Engineering Physics (CAEP)
- Mianyang
- People's Republic of China
| | - Kun Yu
- Institute of Chemical Materials
- China Academy of Engineering Physics (CAEP)
- Mianyang
- People's Republic of China
| |
Collapse
|
9
|
Asatryan R, Pal Y, Hachmann J, Ruckenstein E. Roaming-like Mechanism for Dehydration of Diol Radicals. J Phys Chem A 2018; 122:9738-9754. [DOI: 10.1021/acs.jpca.8b08690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rubik Asatryan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yudhajit Pal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Computational and Data-Enabled Science and Engineering Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Johannes Hachmann
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- New York State Center of Excellence in Materials Informatics, Buffalo, New York 14203, United States
- Computational and Data-Enabled Science and Engineering Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
10
|
Saheb V, Zokaie M. Multichannel Gas-Phase Unimolecular Decomposition of Acetone: Theoretical Kinetic Studies. J Phys Chem A 2018; 122:5895-5904. [DOI: 10.1021/acs.jpca.8b02423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vahid Saheb
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Meymanat Zokaie
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| |
Collapse
|
11
|
Boundary-Layer Model to Predict Chemically Reacting Flow within Heated, High-Speed, Microtubular Reactors. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Saheb V, Hashemi SR, Hosseini SMA. Theoretical Studies on the Kinetics of Multi-Channel Gas-Phase Unimolecular Decomposition of Acetaldehyde. J Phys Chem A 2017; 121:6887-6895. [PMID: 28825298 DOI: 10.1021/acs.jpca.7b04771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theoretical kinetic studies are performed on the multichannel thermal decomposition of acetaldehyde. The geometries of the stationary points on the potential energy surface of the reaction are optimized at the MP2(full)/6-311++G(2d,2p) level of theory. More accurate energies are obtained by single point energy calculations at the CCSD(T,full)/augh-cc-pVTZ+2df, CBS-Q and G4 levels of theory. Here, by application of steady-state approximation to the thermally activated species CH3CHO* and CH2CHOH* and performance of statistical mechanical manipulations, expressions for the rate constants for different product channels are derived. Special attempts are made to compute accurate energy-specific rate coefficients for different channels by using semiclassical transition state theory. It is found that the isomerization of CH3CHO to the enol-form CH2CHOH plays a significant role in the unimolecular reaction of CH3CHO. The possible products of the reaction are formed via unimolecular decomposition of CH3CHO and CH2CHOH. The computed rate coefficients reveal that the dominant channel at low temperatures and high pressures is the formation of CH2CHOH due to the low barrier height for CH3CHO → CH2CHOH isomerization process. However, at high temperatures, the product channel CH3 + CHO becomes dominant.
Collapse
Affiliation(s)
- Vahid Saheb
- Department of Chemistry, Shahid Bahonar University of Kerman , Kerman 76169, Iran
| | - S Rasoul Hashemi
- Department of Chemistry, Shahid Bahonar University of Kerman , Kerman 76169, Iran
| | | |
Collapse
|
13
|
Couch DE, Buckingham GT, Baraban JH, Porterfield JP, Wooldridge LA, Ellison GB, Kapteyn HC, Murnane MM, Peters WK. Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products. J Phys Chem A 2017; 121:5280-5289. [DOI: 10.1021/acs.jpca.7b02821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David E. Couch
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Grant T. Buckingham
- Department
of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Joshua H. Baraban
- Department
of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | | | - Laura A. Wooldridge
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - G. Barney Ellison
- Department
of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Henry C. Kapteyn
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Margaret M. Murnane
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - William K. Peters
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Mebel AM, Georgievskii Y, Jasper AW, Klippenstein SJ. Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene. Faraday Discuss 2016; 195:637-670. [DOI: 10.1039/c6fd00111d] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the mechanisms for growth of polycyclic aromatic hydrocarbons (PAHs) requires accurate temperature- and pressure-dependent rate coefficients for a great variety of feasible pathways. Even the pathways for the formation of the simplest PAHs, indene and naphthalene, are fairly complex. These pathways provide important prototypes for modeling larger PAH growth. In this work we employ the ab initio RRKM theory-based master equation approach to predict the rate constants involved in the formation of indene and its conversion to naphthalene. The reactions eventually leading to indene involve C9Hx (x = 8–11) potential energy surfaces (PESs) and include C6H5 + C3H4 (allene and propyne), C6H6 + C3H3, benzyl + C2H2, C6H5 + C3H6, C6H6 + C3H5 and C6H5 + C3H5. These predictions allow us to make a number of valuable observations on the role of various mechanisms. For instance, we demonstrate that reactions which can significantly contribute to the formation of indene include phenyl + allene and H-assisted isomerization to indene of its major product, 3-phenylpropyne, benzyl + acetylene, and the reactions of the phenyl radical with propene and the allyl radical, both proceeding via the 3-phenylpropene intermediate. 3-Phenylpropene can be activated to a 1-phenylallyl radical, which in turn rapidly decomposes to indene. Next, indene can be converted to benzofulvene or naphthalene under typical combustion conditions, via its activation by H atom abstraction and methyl substitution on the five-membered ring followed by isomerization and decomposition of the resulting 1-methylindenyl radical, C10H9 → C10H8 + H. Alternatively, the same region of the C10H9 PES can be accessed through the reaction of benzyl with propargyl, C7H7 + C3H3 → C10H10 → C10H9 + H, which therefore can also contribute to the formation of benzofulvene or naphthalene. Benzofulvene easily transforms to naphthalene by H-assisted isomerization. An analysis of the effect of pressure on the reaction outcome and relative product yields is given, and modified Arrhenius fits of the rate constants are reported for the majority of the considered reactions. Ultimately, the implementation of such expressions in detailed kinetic models will help quantify the role of these reactions for PAH growth in various environments.
Collapse
Affiliation(s)
- Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Yuri Georgievskii
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
| | - Ahren W. Jasper
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | | |
Collapse
|