1
|
Liao M, Yao Y, Gan K, Su X, Zhao N, Zuckermann RN, Xuan S, Zhang Z. Self-promoted Controlled Ring-opening Polymerization via Side Chain-mediated Proton Transfer for the Synthesis of Tertiary Amine-pendant Polypeptoids. Angew Chem Int Ed Engl 2024:e202417990. [PMID: 39410820 DOI: 10.1002/anie.202417990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 11/10/2024]
Abstract
Proton transfer is essential in virtually all biochemical processes, with enzymes facilitating this transfer by optimizing the proximity and orientation of reactants through site-specific hydrogen bonds. Proton transfer is also crucial in the rate-determining step for the ring-opening polymerization of N-carboxyanhydrides (NCAs), widely used to prepare various peptidomimetic materials. This study utilizes side chain-assisted strategy to accelerate the rate of chain propagation by using NCAs with tertiary amine pendants. This moiety enables hydrogen bond formation between the incoming NCA and the polymer amino growing end. The tertiary amine side chain of the NCA forms a proton shuttle, via a less constrained transition state, to facilitate the proton transfer process. Moreover, the tertiary amine side chains enable the precipitation of NCA monomers through in situ protonation during the monomer synthesis. This greatly facilitates the synthesis of these unreported monomers, allowing the direct controlled synthesis of tertiary amine-pendant polypeptoids. This side chain-promoted polymerization has rarely been reported. Additionally, the tertiary amine side chains, as widely used functional groups, endow the polymers with unique properties including pH- and thermo-responsiveness, tunable pKas, and siRNA transfection capability. The self-promoted synthesis, facile monomer preparation, and attractive properties make tertiary amine-pendant polypeptoids promising materials for various applications.
Collapse
Affiliation(s)
- Mingzhen Liao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yao Yao
- Suzhou GenePharma Co., Ltd., Suzhou, 215123, China
| | - Kunyu Gan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xianghua Su
- Suzhou GenePharma Co., Ltd., Suzhou, 215123, China
| | - Ning Zhao
- Suzhou GenePharma Co., Ltd., Suzhou, 215123, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ronald N Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, United States
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Wu Y, Chen K, Wang J, Chen M, Dai W, Liu R. Recent Advances and Future Developments in the Preparation of Polypeptides via N-Carboxyanhydride (NCA) Ring-Opening Polymerization. J Am Chem Soc 2024; 146:24189-24208. [PMID: 39172171 DOI: 10.1021/jacs.4c05382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Polypeptides have the same or similar backbone structures as proteins and peptides, rendering them as suitable and important biomaterials. Amino acid N-carboxyanhydrides (NCA) ring-opening polymerization has been the most efficient strategy for polypeptide preparation, with continuous advance in the design of initiators, catalysts and reaction conditions. This Perspective first summarizes the recent progress of NCA synthesis and purification. Subsequently, we focus on various initiators for NCA polymerization, catalysts for accelerating polymerization or enhancing the controllability of polymerization, and recent advances in the reaction approach of NCA polymerization. Finally, we discuss future research directions and open challenges.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangzhou Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minzhang Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenhui Dai
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Wang S, Lu MY, Wan SK, Lyu CY, Tian ZY, Liu K, Lu H. Precision Synthesis of Polysarcosine via Controlled Ring-Opening Polymerization of N-Carboxyanhydride: Fast Kinetics, Ultrahigh Molecular Weight, and Mechanistic Insights. J Am Chem Soc 2024; 146:5678-5692. [PMID: 38359327 DOI: 10.1021/jacs.3c14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The rapid and controlled synthesis of high-molecular-weight (HMW) polysarcosine (pSar), a potential polyethylene glycol (PEG) alternative, via the ring-opening polymerization (ROP) of N-carboxyanhydride (NCA) is rare and challenging. Here, we report the well-controlled ROP of sarcosine NCA (Sar-NCA) that is catalyzed by various carboxylic acids, which accelerate the polymerization rate up to 50 times, and enables the robust synthesis of pSar with an unprecedented ultrahigh molecular weight (UHMW) up to 586 kDa (DP ∼ 8200) and exceptionally narrow dispersity (D̵) below 1.05. Mechanistic experiments and density functional theory calculations together elucidate the role of carboxylic acid as a bifunctional catalyst that significantly facilitates proton transfer processes and avoids charge separation and suggest the ring opening of NCA, rather than decarboxylation, as the rate-determining step. UHMW pSar demonstrates improved thermal and mechanical properties over the low-molecular-weight counterparts. This work provides a simple yet highly efficient approach to UHMW pSar and generates a new fundamental understanding useful not only for the ROP of Sar-NCA but also for other NCAs.
Collapse
Affiliation(s)
- Shuo Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming-Yuan Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Kang Wan
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chun-Yan Lyu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Ma A, Yu X, Liao M, Liu W, Xuan S, Zhang Z. Research Progress in Polypeptoids Prepared by Controlled Ring-Opening Polymerizations. Macromol Rapid Commun 2023; 44:e2200301. [PMID: 35748135 DOI: 10.1002/marc.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Indexed: 01/11/2023]
Abstract
Polypeptoids, structural mimics of polypeptides, have attracted considerable attention due to their biocompatibility, proteolytic stability, thermal processability, good solubility, synthetic accessibility, and structural diversity. Polypeptoids have emerged as an interesting material in both polymer science and biological field. This review primarily discusses the research progress of polypeptoids prepared by controlled ring-opening polymerizations in the past decade, including synthetic strategies of monomers, polymerizations by different initiators, postfunctionalization, fundamental properties, crystallization-driven self-assembly, and potential biological applications.
Collapse
Affiliation(s)
- Anyao Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinyan Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mingzhen Liao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wenxiao Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Zou J, Zhou M, Xiao X, Liu R. Advance in Hybrid Peptides Synthesis. Macromol Rapid Commun 2022; 43:e2200575. [PMID: 35978269 DOI: 10.1002/marc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Indexed: 11/08/2022]
Abstract
Hybrid peptides with heterogeneous backbone are a class of peptide mimics with adjustable proteolytic stability obtained from incorporating unnatural amino acid residues into peptide backbone. α/β-peptides and peptide/peptoid hybrids are two types of hybrid peptides that are widely studied for diverse applications, and several synthetic methods have been developed. In this mini review, the advance in hybrid peptide synthesis is summarized, including solution-phase method, solid-phase method, and novel polymerization method. Conventional solution-phase method and solid-phase method generally result in oligomers with defined sequences, while polymerization methods have advantages in preparing peptide hybrid polymers with high molecular weight with simple operation and low cost. In addition, the future development of polymerization method to realize the control of the peptide hybrid polymer sequence is discussed.
Collapse
Affiliation(s)
- Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Abstract
This letter introduces a method to obtain PiPo by the copolymerization of N-phenyloxycarbonyl-amino acids initiated by primary amine. The obtained PiPo have adjustable solubility in water and organic solvents to assemble into nanoparticles.
Collapse
Affiliation(s)
- Siqi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wanli Chen
- Center of Analysis & Measurement, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Chen K, Wu Y, Wu X, Zhou M, Zhou R, Wang J, Xiao X, Yuan Y, Liu R. Facile synthesis of polypeptoids bearing bulky sidechains via urea accelerated ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides. Polym Chem 2022. [DOI: 10.1039/d1py01324f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The organocatalyst 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (U–O) accelerates the ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides (NNCAs) for the rapid synthesis of polypeptoids bearing bulky sidechains.
Collapse
Affiliation(s)
- Kang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ruiyi Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangzhou Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Salas-Ambrosio P, Tronnet A, Badreldin M, Ji S, Lecommandoux S, Harrisson S, Verhaeghe P, Bonduelle C. Effect of N-alkylation in N-carboxyanhydride (NCA) ring-opening polymerization kinetics. Polym Chem 2022. [DOI: 10.1039/d2py00985d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-carboxyanhydrides ring-opening polymerization (ROP) showed that electron-donating groups of the N-alkylation enhanced the ROP kinetic rates through an inductive effect that could counterbalance the steric hindrance during the propagation.
Collapse
Affiliation(s)
| | - Antoine Tronnet
- LCC-CNRS, UPR8241, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mostafa Badreldin
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Sifan Ji
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | | - Simon Harrisson
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Pierre Verhaeghe
- LCC-CNRS, UPR8241, Université de Toulouse, CNRS, UPS, Toulouse, France
- CHU de Nîmes, service de Pharmacie, Nîmes, France
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, F-38041, Grenoble, France
| | - Colin Bonduelle
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| |
Collapse
|
9
|
Alkali-metal hexamethyldisilazide initiated polymerization on alpha-amino acid N-substituted N-carboxyanhydrides for facile polypeptoid synthesis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Bai T, Zheng B, Ling J. Density Functional Theory Studies on the Synthesis of Poly(α-Amino Acid)s Via the Amine-Mediated Ring Opening Polymerizations of N-Carboxyanhydrides and N-Thiocarboxyanhydrides. Front Chem 2021; 9:645949. [PMID: 33855011 PMCID: PMC8039441 DOI: 10.3389/fchem.2021.645949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
To synthesize well-defined poly (α-amino acid)s (PAAs), ring opening polymerizations (ROP) of cyclic monomers of α-amino acid N-carboxyanhydrides (NCAs) and N-thiocarboxyanhydrides (NTAs) are most widely used. In this mini-review, we summarize the mechanism details of the monomer preparation and ROP. The present study used density functional theory calculations to reveal the mechanisms together with experimental phenomena in the past decades. Detailed discussion includes normal amine mechanism and the selectivity of the initiators bearing various nucleophilic groups.
Collapse
Affiliation(s)
| | | | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Frey M, Vincent M, Bobbala S, Burt R, Scott E. Mapping the supramolecular assembly space of poly(sarcosine)-b-poly(propylene sulfide) using a combinatorial copolymer library. Chem Commun (Camb) 2020; 56:6644-6647. [PMID: 32406439 PMCID: PMC7733307 DOI: 10.1039/d0cc00925c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combinatorial copolymer library was created to rapidly screen the landscape of self-assembled nanostructure morphologies formed by block copolymers composed of hydrophilic peptoid polysarcosine (PSarc) and hydrophobic poly(propylene sulfide) (PPS) blocks. By probing rationally selected hydrophilic/hydrophobic copolymer weight fractions, the rapid and reproducible fabrication of micellar and vesicular nanostructures was optimized.
Collapse
Affiliation(s)
- Molly Frey
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA
| | - Michael Vincent
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Rajan Burt
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Evan Scott
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA and Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
12
|
Muhl C, Zengerling L, Groß J, Eckhardt P, Opatz T, Besenius P, Barz M. Insight into the synthesis of N-methylated polypeptides. Polym Chem 2020. [DOI: 10.1039/d0py01055c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ring-opening polymerization of α-substituted N-methylated N-carboxy anhydrides is reported. The polymerization was tested using various amino acids and initiators, and was found to be limited by the steric demand of N-methylated compared to conventional amino acids.
Collapse
Affiliation(s)
- Christian Muhl
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55099 Mainz
- Germany
| | - Lydia Zengerling
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55099 Mainz
- Germany
| | - Jonathan Groß
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55099 Mainz
- Germany
| | - Paul Eckhardt
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55099 Mainz
- Germany
| | - Till Opatz
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55099 Mainz
- Germany
| | - Pol Besenius
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55099 Mainz
- Germany
| | - Matthias Barz
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55099 Mainz
- Germany
- Leiden Academic Center for Drug Research (LACDR)
| |
Collapse
|
13
|
Yang Z, Bai T, Ling J, Shen Y. Hydroxyl-tolerated polymerization of N-phenoxycarbonyl α-amino acids: A simple way to polypeptides bearing hydroxyl groups. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhening Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
14
|
Bai T, Ling J. Polymerization rate difference of
N
‐alkyl glycine NCAs: Steric hindrance or not? Biopolymers 2019; 110:e23261. [DOI: 10.1002/bip.23261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou China
| |
Collapse
|
15
|
Tao X, Li MH, Ling J. α-Amino acid N-thiocarboxyanhydrides: A novel synthetic approach toward poly(α-amino acid)s. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Zhu CN, Bai T, Wang H, Bai W, Ling J, Sun JZ, Huang F, Wu ZL, Zheng Q. Single Chromophore-Based White-Light-Emitting Hydrogel with Tunable Fluorescence and Patternability. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39343-39352. [PMID: 30351900 DOI: 10.1021/acsami.8b12619] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bioluminescence is widespread in nature such as the jellyfish, which inspires scientists to design polymer hydrogels with tunable fluorescence. However, it remains a big challenge to develop white-light-emitting hydrogels with local tunability of the fluorescent behavior. Herein, we report a white fluorescent hydrogel prepared by one-pot micellar copolymerization of hydrophilic acrylamide and hydrophobic single donor-acceptor chromophore monomer, in which the unimer and the dimer of the chromophore coexist and generate high- and low-energy emission, respectively, under excitation. The fluorescent behavior of the hydrogel can be well tuned by phototreatment or heat treatment that induces unimer-to-dimer transformation of the chromophore and thus variation of the fluorescent color from blue to white and then to yellow. The fluorescence can also be reversibly switched off by forming terpyridine-Cu2+ chelate complexes and recovered by using chelating agent to extract the Cu2+ ions out of the gel matrix. These properties afford patterning the fluorescent hydrogel, which is transparent under daylight yet shows the pattern under ultraviolet light. These patterned fluorescent hydrogels should find applications in protected message display for improved information security.
Collapse
|
17
|
Ryu K, Lee MK, Park J, Kim TI. pH-Responsive Charge-Conversional Poly(ethylene imine)–Poly(l-lysine)–Poly(l-glutamic acid) with Self-Assembly and Endosome Buffering Ability for Gene Delivery Systems. ACS APPLIED BIO MATERIALS 2018; 1:1496-1504. [DOI: 10.1021/acsabm.8b00428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Miao Y, Xie F, Cen J, Zhou F, Tao X, Luo J, Han G, Kong X, Yang X, Sun J, Ling J. Fe 3+@polyDOPA- b-polysarcosine, a T 1-Weighted MRI Contrast Agent via Controlled NTA Polymerization. ACS Macro Lett 2018; 7:693-698. [PMID: 35632979 DOI: 10.1021/acsmacrolett.8b00287] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
α-Amino acid N-thiocarboxyanhydrides (NTAs) are promising cyclic monomers to synthesize polypeptides and polypeptoids via controlled ring-opening polymerizations. Superior to N-carboxyanhydrides requiring protection on hydroxyl groups, NTAs are able to tolerate such nucleophiles. In this work, we report the synthesis of NTA monomers containing unprotected phenolic hydroxyl groups of 3,4-dihydroxy-l-phenylalanine (DOPA) and l-tyrosine (Tyr). Their controlled ROPs and sequential copolymerizations with polysarcosine (PSar) yield PDOPA, PTyr, and PDOPA-b-polysarcosine (PDOPA-b-PSar) products quantitatively with designable degrees of polymerization. Micellar nanoparticles of Fe3+@PDOPA-b-PSar have been prepared thanks to the strong chelation of iron(III) cation by catechol ligands that act as T1-weighted magnetic resonance imaging (MRI) contrast agents. For instance, Fe3+@PDOPA10-b-PSar50 exhibits higher longitudinal relaxivity (r1 = 5.6 mM-1 s-1) than commercial Gd3+-based compounds. Effective MRI contrast enhancement in vivo of nude mice with a moderate duration (150 min) and 3D magnetic resonance angiography in rabbit illustrated by using volume rendering and maximal intensity projection techniques ignite the clinical application of Fe3+-based polypept(o)ides in diagnostic radiology as Gd-free MRI contrast agents.
Collapse
Affiliation(s)
- Yuedong Miao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fengnan Xie
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Medical Imagine, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiayu Cen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xinfeng Tao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingfeng Luo
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Guocan Han
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xianglei Kong
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou 310016, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Birke A, Ling J, Barz M. Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.01.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Zhu N, Liu Y, Liu J, Ling J, Hu X, Huang W, Feng W, Guo K. Organocatalyzed chemoselective ring-opening polymerizations. Sci Rep 2018; 8:3734. [PMID: 29487371 PMCID: PMC5829214 DOI: 10.1038/s41598-018-22171-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/19/2018] [Indexed: 11/26/2022] Open
Abstract
A novel metal-free and protecting-group-free synthesis method to prepare telechelic thiol-functionalized polyesters is developed by employing organocatalysis. A scope of Brønsted acids, including trifluoromethanesulfonic acid (1), HCl.Et2O (2), diphenyl phosphate (3), γ-resorcylic acid (4) and methanesulfonic acid (5), are evaluated to promote ring-opening polymerization of ε-caprolactone with unprotected 6-mercapto-1-hexanol as the multifunctional initiator. Among them, diphenyl phosphate (3) exhibits great chemoselectivity and efficiency, which allows for simply synthesis of thiol-terminated poly(ε-caprolactone) with near-quantitative thiol fidelity, full monomer conversion, controlled molecular weight and narrow polydispersity. Kinetic study confirms living/controlled nature of the organocatalyzed chemoselective polymerizations. Density functional theory calculation illustrates that the chemoselectivity of diphenyl phosphate (3) is attributed to the stronger bifunctional activation of monomer and initiator/chain-end as well as the lower energy in hydroxyl pathway than thiol one. Moreover, series of tailor-made telechelic thiol-terminated poly(δ-valerolactone) and block copolymers are efficiently generated under mild conditions.
Collapse
Affiliation(s)
- Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Junhua Liu
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization of the Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Zhejiang Center for Drug & Cosmetic Evaluation, Hangzhou, 310012, China
| | - Jun Ling
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization of the Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Xin Hu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211800, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Weijun Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Weiyang Feng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
21
|
Shi Y, Bai T, Bai W, Wang Z, Chen M, Yao B, Sun JZ, Qin A, Ling J, Tang BZ. Phenol-yne Click Polymerization: An Efficient Technique to Facilely Access Regio- and Stereoregular Poly(vinylene ether ketone)s. Chemistry 2017; 23:10725-10731. [DOI: 10.1002/chem.201702966] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Yang Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Wei Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Zhe Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Ming Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Bicheng Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Anjun Qin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
- Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 P.R. China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
- Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 P.R. China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon; Hong Kong P.R. China
| |
Collapse
|
22
|
Special photophysical properties of poly(2,11-diquinoxalinopyrene)s. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1961-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Bai T, Ling J. NAM-TMS Mechanism of α-Amino Acid N-Carboxyanhydride Polymerization: A DFT Study. J Phys Chem A 2017; 121:4588-4593. [DOI: 10.1021/acs.jpca.7b04278] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tianwen Bai
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Shen W, Ge J, He S, Zhang R, Zhao C, Fan Y, Yu S, Liu B, Zhu Q. A Self-Quenching System Based on Bis-Naphthalimide: A Dual Two-Photon-Channel GSH Fluorescent Probe. Chem Asian J 2017; 12:1532-1537. [DOI: 10.1002/asia.201700340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/27/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Wei Shen
- Department of General Surgery; Jinhua Central Hospital; Jinhua 321000 China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; Zhejiang University of Technology; Chaowang Road 18 Hangzhou China
| | - Siyang He
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; Zhejiang University of Technology; Chaowang Road 18 Hangzhou China
| | - Ruoyu Zhang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chengyan Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; Zhejiang University of Technology; Chaowang Road 18 Hangzhou China
| | - Yong Fan
- Department of General Surgery; Jinhua Central Hospital; Jinhua 321000 China
| | - Shian Yu
- Department of General Surgery; Jinhua Central Hospital; Jinhua 321000 China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; Zhejiang University of Technology; Chaowang Road 18 Hangzhou China
| |
Collapse
|
25
|
He B, Su H, Bai T, Wu Y, Li S, Gao M, Hu R, Zhao Z, Qin A, Ling J, Tang BZ. Spontaneous Amino-yne Click Polymerization: A Powerful Tool toward Regio- and Stereospecific Poly(β-aminoacrylate)s. J Am Chem Soc 2017; 139:5437-5443. [DOI: 10.1021/jacs.7b00929] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Benzhao He
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Huifang Su
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tianwen Bai
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongwei Wu
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shiwu Li
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Meng Gao
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zujin Zhao
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jun Ling
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- Guangdong
Innovative Research Team, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Tao X, Zheng B, Kricheldorf HR, Ling J. AreN-substituted glycineN-thiocarboxyanhydride monomers really hard to polymerize? ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28402] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xinfeng Tao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Hans R. Kricheldorf
- Institut für Technische und Makromolekulare Chemie; Bundestrase 45 Hamburg D-20146 Germany
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
27
|
Jiang MJ, Xiao WJ, Huang JC, Li WS, Mo YQ. Diindole[3,2- b :4,5- b ′]pyrrole as a chromophore containing three successively fused pyrroles: synthesis, optoelectronic properties and π-functionalization. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem Rev 2015; 116:1753-802. [DOI: 10.1021/acs.chemrev.5b00201] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Niklas Gangloff
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Juliane Ulbricht
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Robert Luxenhofer
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|