• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4636017)   Today's Articles (42)   Subscriber (50109)
For: He X, Wu H, Zhang P, Zhang Y. Quantum State-to-State Dynamics of the H + LiH → H2 + Li Reaction. J Phys Chem A 2015. [DOI: 10.1021/acs.jpca.5b05178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Chang H, Li W, Sun Z. New Diabatic Potential Energy Surfaces for the Li + H2 Reaction and Time-Dependent Quantum Wave Packet Studies. J Phys Chem A 2024;128:4412-4424. [PMID: 38787593 DOI: 10.1021/acs.jpca.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
2
Mao Y, Buren B, Yang Z, Chen M. Time-dependent wave packet dynamics study of the resonances in the H + LiH+(v = 0, j = 0) → Li+ + H2 reaction at low collision energies. Phys Chem Chem Phys 2022;24:15532-15539. [PMID: 35713276 DOI: 10.1039/d1cp05601h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
3
Buren B, Chen M. Stereodynamics-Controlled Product Branching in the Nonadiabatic H + NaD → Na(3s, 3p) + HD Reaction at Low Temperatures. J Phys Chem A 2022;126:2453-2462. [PMID: 35434992 DOI: 10.1021/acs.jpca.2c00114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
4
Sahoo J, Rawat AMS, Mahapatra S. Quantum interference in the mechanism of H + LiH+ → H2 + Li+ reaction dynamics. Phys Chem Chem Phys 2021;23:27327-27339. [PMID: 34853838 DOI: 10.1039/d1cp04120g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
Non-adiabatic quantum dynamics studies of the Mg+(3p) + D2 → MgD+ + D reaction. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
6
He D, Li W, Wang M. A study on the non-adiabatic dynamics of the Li(2p) + H2 → Li(2 s) + H2 quenching reaction calculated by time-dependent wavepacket method. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
7
Sahoo J, Rawat AMS, Mahapatra S. Theoretical Study of the Energy Disposal Mechanism and the State-Resolved Quantum Dynamics of the H + LiH+ → H2 + Li+ Reaction. J Phys Chem A 2021;125:3387-3397. [PMID: 33876630 DOI: 10.1021/acs.jpca.1c01811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Sharipov AS, Loukhovitski BI. Energy disposal into the vibrational degrees of freedom of bimolecular reaction products: Key factors and simple model. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
9
Li W, Sun J, He D. Non-adiabatic dynamics studies of the H(2S) + LiH(X1Σ+) reaction by time-dependent wave packet method. Phys Chem Chem Phys 2020;22:17587-17596. [PMID: 32716453 DOI: 10.1039/d0cp01803a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Song J, Zhu Z. Dynamics studies of the Li(2S) + H2(X1Σg+) → LiH (X1Σ+) + H(2S) reaction by time-dependent wave packet and quasi-classical trajectory methods. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Buren B, Yang Z, Chen M. Dynamics study on the non-adiabatic Na(3p) + HD → NaH/NaD + D/H reaction: insertion-abstraction mechanism. Phys Chem Chem Phys 2020;22:3633-3642. [PMID: 31998904 DOI: 10.1039/c9cp06026j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
12
Effects of rovibrational excitation of LiH on the LiH depletion and H exchange channels for the reaction H (2S) + LiH (X1Σ+) on a new potential energy surface. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Wang H, Fang J, Yang H, Song J, Li Y. Ring-polymer molecular dynamical benchmarks for X + H2 insertion reactions. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
He X, Li W, Meng H, Li C, Guo G, Qiu X, Wei J. Quantum state-to-state study for (H−(D−),HD) collisions on two potential energy surfaces. Phys Chem Chem Phys 2019;21:7196-7207. [DOI: 10.1039/c8cp07824f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
15
Huran AW, González-Sánchez L, Gomez-Carrasco S, Aldegunde J. A Quantum Mechanical Study of the k–j and k′–j′ Vector Correlations for the H + LiH → Li + H2 Reaction. J Phys Chem A 2017;121:1535-1543. [DOI: 10.1021/acs.jpca.6b10094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
He X, Zhang P, Duan ZX. Isotopic effect on the dynamics of the H/D + LiH/LiD reactions. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
17
He X, Lv S, Hayat T, Han K. Potential Energy Surfaces for the First Two Lowest-Lying Electronic States of the LiH2+ System, and Dynamics of the H+ + LiH ⇌ H2+ + Li + Reactions. J Phys Chem A 2016;120:2459-70. [PMID: 27022663 DOI: 10.1021/acs.jpca.6b02007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA