1
|
Jake L, Curotto E. On Diffusion Monte Carlo in spaces with multi-valued maps, boundaries and gradient torsion. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Boyer MA, Chiu CS, McDonald DC, Wagner JP, Colley JE, Orr DS, Duncan MA, McCoy AB. The Role of Tunneling in the Spectra of H 5+ and D 5+ up to 7300 cm -1. J Phys Chem A 2020; 124:4427-4439. [PMID: 32392420 DOI: 10.1021/acs.jpca.0c02299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spectra for H5+ and D5+ are extended to cover the region between 4830 and 7300 cm-1. These spectra are obtained using mass-selected photodissociation spectroscopy. To understand the nature of the states that are accessed by the transitions in this and prior studies, we develop a four-dimensional model Hamiltonian. This Hamiltonian is expressed in terms of the two outer H2 stretches, the displacement of the shared proton from the center of mass of these two H2 groups, and the distance between the H2 groups. This choice is motivated by the large oscillator strength associated with the shared proton stretch and the fact that the spectral regions that have been probed correspond to zero, one, and two quanta of excitation in the H2 stretches. This model is analyzed using an adiabatic separation of the H2 stretches from the other two vibrations and includes the non-adiabatic couplings between H2 stretch states with the same total number of quanta of excitation in the H2 stretches. Based on the analysis of the energies and wave functions obtained from this model, we find that when there are one or more quanta of excitation in the H2 stretches the states come in pairs that reflect tunneling doublets. The states accessed by the transitions in the spectrum with the largest intensity are assigned to the members of the doublets with requisite symmetry that are localized on the lowest-energy adiabat for a given level of H2 excitation.
Collapse
Affiliation(s)
- Mark A Boyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chloe S Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David C McDonald
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - J Philipp Wagner
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jason E Colley
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Dylan S Orr
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Stringer A, Curotto E. An ergodic measure for Diffusion Monte Carlo ground state wavefunctions: Application to a hydrogen cluster with an isotopic impurity. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Császár AG, Fábri C, Sarka J. Quasistructural molecules. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University Budapest Hungary
- MTA‐ELTE Complex Chemical Systems Research Group Budapest Hungary
| | - Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University Budapest Hungary
- MTA‐ELTE Complex Chemical Systems Research Group Budapest Hungary
| | - János Sarka
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas USA
| |
Collapse
|
5
|
Sibert EL. Modeling vibrational anharmonicity in infrared spectra of high frequency vibrations of polyatomic molecules. J Chem Phys 2019; 150:090901. [DOI: 10.1063/1.5079626] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edwin L. Sibert
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Curotto E, Mella M. Diffusion Monte Carlo simulations of gas phase and adsorbed D 2-(H 2) n clusters. J Chem Phys 2018; 148:102315. [PMID: 29544319 DOI: 10.1063/1.5000372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have computed ground state energies and analyzed radial distributions for several gas phase and adsorbed D2(H2)n and HD(H2)n clusters. An external model potential designed to mimic ionic adsorption sites inside porous materials is used [M. Mella and E. Curotto, J. Phys. Chem. A 121, 5005 (2017)]. The isotopic substitution lowers the ground state energies by the expected amount based on the mass differences when these are compared with the energies of the pure clusters in the gas phase. A similar impact is found for adsorbed aggregates. The dissociation energy of D2 from the adsorbed clusters is always much higher than that of H2 from both pure and doped aggregates. Radial distributions of D2 and H2 are compared for both the gas phase and adsorbed species. For the gas phase clusters, two types of hydrogen-hydrogen interactions are considered: one based on the assumption that rotations and translations are adiabatically decoupled and the other based on nonisotropic four-dimensional potential. In the gas phase clusters of sufficiently large size, we find the heavier isotopomer more likely to be near the center of mass. However, there is a considerable overlap among the radial distributions of the two species. For the adsorbed clusters, we invariably find the heavy isotope located closer to the attractive interaction source than H2, and at the periphery of the aggregate, H2 molecules being substantially excluded from the interaction with the source. This finding rationalizes the dissociation energy results. For D2-(H2)n clusters with n≥12, such preference leads to the desorption of D2 from the aggregate, a phenomenon driven by the minimization of the total energy that can be obtained by reducing the confinement of (H2)12. The same happens for (H2)13, indicating that such an effect may be quite general and impact on the absorption of quantum species inside porous materials.
Collapse
Affiliation(s)
- E Curotto
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | - M Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
7
|
Bulik IW, Frisch MJ, Vaccaro PH. Fixed-Node, Importance-Sampling Diffusion Monte Carlo for Vibrational Structure with Accurate and Compact Trial States. J Chem Theory Comput 2018; 14:1554-1563. [DOI: 10.1021/acs.jctc.8b00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ireneusz W. Bulik
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Michael J. Frisch
- Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492, United States
| | - Patrick H. Vaccaro
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
8
|
Bulik IW, Frisch MJ, Vaccaro PH. Vibrational self-consistent field theory using optimized curvilinear coordinates. J Chem Phys 2017; 147:044110. [DOI: 10.1063/1.4995440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ireneusz W. Bulik
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Michael J. Frisch
- Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492, USA
| | - Patrick H. Vaccaro
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
9
|
Hochlaf M. Advances in spectroscopy and dynamics of small and medium sized molecules and clusters. Phys Chem Chem Phys 2017; 19:21236-21261. [DOI: 10.1039/c7cp01980g] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigations of the spectroscopy and dynamics of small- and medium-sized molecules and clusters represent a hot topic in atmospheric chemistry, biology, physics, atto- and femto-chemistry and astrophysics.
Collapse
Affiliation(s)
- Majdi Hochlaf
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| |
Collapse
|
10
|
Sarka J, Császár AG. Interpretation of the vibrational energy level structure of the astructural molecular ion H5+ and all of its deuterated isotopomers. J Chem Phys 2016; 144:154309. [DOI: 10.1063/1.4946808] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- János Sarka
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| |
Collapse
|
11
|
Calculating rovibrationally excited states of H2D+ and HD2+ by combination of fixed node and multi-state rotational diffusion Monte Carlo. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Lin Z, McCoy AB. Probing the Relationship Between Large-Amplitude Motions in H5(+) and Proton Exchange Between H3(+) and H2. J Phys Chem A 2015; 119:12109-18. [PMID: 26244451 DOI: 10.1021/acs.jpca.5b05774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the spectroscopy and dynamics of H5(+) is central in gaining insights into the H3(+) + H2 → H5(+) → H2 + H3(+) proton transfer reaction. This molecular ion exhibits large-amplitude vibrations, which allow for the transfer of a proton between H3(+) and H2 even in its ground vibrational state. With vibrational excitation, the number of open channels for permutations of protons increase. In this work, the minimized energy path variant of diffusion Monte Carlo is used to investigate how the energetically accessible proton permutations evolve as H5(+) is dissociated into H3(+) + H2. Two mechanisms for proton permutation are investigated. The first is the proton hop, which correlates to large-amplitude vibrations of the central proton in H5(+). The second is the exchange of a pair of hydrogen atoms between H3(+) and H2. This mechanism requires several proton hops along with a 120° rotation of H3(+) within the H5(+) molecular ion. This analysis shows that while there is a narrow region of configuration space over which both isomerization processes are energetically accessible, full permutation of the five protons in H5(+) more likely occurs through a stepwise mechanism. Such full permutation of the protons becomes accessible when the shared proton stretch is excited to the vpt = 2 or 3 excited state. The effects of deuteration and rotational excitation of the H2 and H3(+) products are also investigated. Deuteration inhibits permutation of protons, while rotational excitation has only a small impact on these processes.
Collapse
Affiliation(s)
- Zhou Lin
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Anne B McCoy
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|