1
|
Zhang YR, Yuan DF, Wang LS. Investigation of the Electronic and Vibrational Structures of the 2-Furanyloxy Radical Using Photoelectron Imaging and Photodetachment Spectroscopy via the Dipole-Bound State of the 2-Furanyloxide Anion. J Phys Chem Lett 2022; 13:11481-11488. [PMID: 36469423 DOI: 10.1021/acs.jpclett.2c03382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The 2-furanyloxy radical is an important chemical reaction intermediate in the combustion of biofuels and aromatic compounds. We report an investigation of its electronic and vibrational structures using photoelectron and photodetachment spectroscopy and resonant photoelectron imaging (PEI) of cryogenically cooled 2-furanyloxide anion. The electron affinity of 2-furanyloxy is measured to be 1.7573(8) eV. Two excited electronic states are observed at excitation energies of 2.14 and 2.82 eV above the ground state. Photodetachment spectroscopy reveals a dipole-bound state 0.0143 eV below the detachment threshold and 25 vibrational Feshbach resonances for the 2-furanyloxide anion. The combination of photodetachment spectroscopy and resonant PEI yields frequencies for 18 out of a total of 21 vibrational modes for the 2-furanyloxy radical, including all six of its bending modes. The rich electronic and vibrational information will be valuable for further understanding the role of 2-furanyloxy as a key reaction intermediate of combustion and atmospheric interests.
Collapse
Affiliation(s)
- Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
2
|
Mishra P, Fritz SM, Herbers S, Mebel AM, Zwier TS. Gas-phase pyrolysis of trans 3-pentenenitrile: competition between direct and isomerization-mediated dissociation. Phys Chem Chem Phys 2021; 23:6462-6471. [PMID: 33729262 DOI: 10.1039/d1cp00104c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The flash pyrolysis of trans 3-pentenenitrile (3-PN, CH3-CH[double bond, length as m-dash]CH-CH2-CN) was studied by combining the results of VUV photoionization mass spectra with broadband microwave spectra recorded as a function of the temperature of the pyrolysis tube. The two separated functional groups (vinyl and nitrile) open up isomerization as an initial step in competition with unimolecular dissociation. Primary products were detected by keeping the 3-PN concentration low and limiting reaction times to the traversal time of the gas in the pyrolysis tube (∼100 μs). The reaction is quenched and products are cooled by expansion into vacuum before interrogation over the 8-18 GHz region using chirped-pulse broadband methods. 118 nm VUV photoionization of the same reaction mixture provides a means of detecting all products with ionization potentials below 10.5 eV with minimal fragmentation. These results are combined with a detailed computational investigation of the C5H7N and related potential energy surfaces, leading to a consistent picture of the unimolecular decomposition of 3-PN. Loss of two H-atoms to form a 79 amu product is proven from its microwave transitions to contain trans-Z-2,4-pentadienenitrile, while no pyridine is observed. Methyl loss, HCN loss, and breaking the central C(2)-C(3) bond all occur following isomerization of the position of the double bond, thereby opening up low-energy pathways to these decomposition channels.
Collapse
Affiliation(s)
- Piyush Mishra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA
| | | | | | | | | |
Collapse
|
3
|
Fritz SM, Hays BM, Hernandez-Castillo AO, Abeysekera C, Zwier TS. Multiplexed characterization of complex gas-phase mixtures combining chirped-pulse Fourier transform microwave spectroscopy and VUV photoionization time-of-flight mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093101. [PMID: 30278727 DOI: 10.1063/1.5046085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
We report details of the design and operation of a single apparatus that combines Chirped-Pulse Fourier Transform Microwave (CP-FTMW) spectroscopy with vacuum ultraviolet (VUV) photoionization Time-of-Flight Mass Spectrometry (TOFMS). The supersonic expansion used for cooling samples is interrogated first by passing through the region between two microwave horns capable of broadband excitation and detection in the 2-18 GHz frequency region of the microwave. After passing through this region, the expansion is skimmed to form a molecular beam, before being probed with 118 nm (10.5 eV) single-photon VUV photoionization in a linear time-of-flight mass spectrometer. The two detection schemes are powerfully complementary to one another. CP-FTMW detects all components with significant permanent dipole moments. Rotational transitions provide high-resolution structural data. VUV TOFMS provides a gentle and general method for ionizing all components of a gas phase mixture with ionization thresholds below 10.5 eV, providing their molecular formulae. The advantages, complementarity, and limitations of the combined methods are illustrated through results on two gas-phase mixtures made up of (i) three furanic compounds, two of which are structural isomers of one another, and (ii) the effluent from a flash pyrolysis source with o-guaiacol as the precursor.
Collapse
Affiliation(s)
- Sean M Fritz
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Brian M Hays
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Chamara Abeysekera
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
4
|
Abeysekera C, Hernandez-Castillo A, Stanton JF, Zwier TS. Broadband Microwave Spectroscopy of 2-Furanyloxy Radical: Primary Pyrolysis Product of the Second-Generation Biofuel 2-Methoxyfuran. J Phys Chem A 2018; 122:6879-6885. [PMID: 30063137 DOI: 10.1021/acs.jpca.8b05102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chamara Abeysekera
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - A.O. Hernandez-Castillo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John F. Stanton
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Timothy S. Zwier
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Ormond TK, Baraban JH, Porterfield JP, Scheer AM, Hemberger P, Troy TP, Ahmed M, Nimlos MR, Robichaud DJ, Daily JW, Ellison GB. Thermal Decompositions of the Lignin Model Compounds: Salicylaldehyde and Catechol. J Phys Chem A 2018; 122:5911-5924. [DOI: 10.1021/acs.jpca.8b03201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thomas K. Ormond
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Joshua H. Baraban
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Jessica P. Porterfield
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Adam M. Scheer
- Combustion Research Facility, Sandia National Laboratory, PO Box 969, Livermore, California 94551-0969, United States
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute, CH-5234 Villigen-PSI, Switzerland
| | - Tyler P. Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Mark R. Nimlos
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - John W. Daily
- Center for Combustion and Environmental Research, Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309-0427, United States
| | - G. Barney Ellison
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
6
|
Boundary-Layer Model to Predict Chemically Reacting Flow within Heated, High-Speed, Microtubular Reactors. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|