1
|
Keya KN, Han Y, Xia W, Kilin D. Inter-Oligomer Interaction Influence on Photoluminescence in Cis-Polyacetylene Semiconductor Materials. Polymers (Basel) 2024; 16:1896. [PMID: 39000752 PMCID: PMC11244262 DOI: 10.3390/polym16131896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Semiconducting conjugated polymers (CPs) are pivotal in advancing organic electronics, offering tunable properties for solar cells and field-effect transistors. Here, we carry out first-principle calculations to study individual cis-polyacetylene (cis-PA) oligomers and their ensembles. The ground electronic structures are obtained using density functional theory (DFT), and excited state dynamics are explored by computing nonadiabatic couplings (NACs) between electronic and nuclear degrees of freedom. We compute the nonradiative relaxation of charge carriers and photoluminescence (PL) using the Redfield theory. Our findings show that electrons relax faster than holes. The ensemble of oligomers shows faster relaxation compared to the single oligomer. The calculated PL spectra show features from both interband and intraband transitions. The ensemble shows broader line widths, redshift of transition energies, and lower intensities compared to the single oligomer. This comparative study suggests that the dispersion forces and orbital hybridizations between chains are the leading contributors to the variation in PL. It provides insights into the fundamental behaviors of CPs and the molecular-level understanding for the design of more efficient optoelectronic devices.
Collapse
Affiliation(s)
- Kamrun N Keya
- Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
2
|
Zhuravskyi Y, Iduoku K, Erickson ME, Karuth A, Usmanov D, Casanola-Martin G, Sayfiyev MN, Ziyaev DA, Smanova Z, Mikolajczyk A, Rasulev B. Quantitative Structure-Permittivity Relationship Study of a Series of Polymers. ACS MATERIALS AU 2024; 4:195-203. [PMID: 38496050 PMCID: PMC10941280 DOI: 10.1021/acsmaterialsau.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 03/19/2024]
Abstract
Dielectric constant is an important property which is widely utilized in many scientific fields and characterizes the degree of polarization of substances under the external electric field. In this work, a structure-property relationship of the dielectric constants (ε) for a diverse set of polymers was investigated. A transparent mechanistic model was developed with the application of a machine learning approach that combines genetic algorithm and multiple linear regression analysis, to obtain a mechanistically explainable and transparent model. Based on the evaluation conducted using various validation criteria, four- and eight-variable models were proposed. The best model showed a high predictive performance for training and test sets, with R2 values of 0.905 and 0.812, respectively. Obtained statistical performance results and selected descriptors in the best models were analyzed and discussed. With the validation procedures applied, the models were proven to have a good predictive ability and robustness for further applications in polymer permittivity prediction.
Collapse
Affiliation(s)
- Yevhenii Zhuravskyi
- Department of Technology of Organic Products, Lviv Polytechnic National University, Lviv 79013, Ukraine
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Meade E Erickson
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Anas Karuth
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Durbek Usmanov
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
- Institute of the Chemistry of Plant Substances AS RUz, Tashkent 100170, Uzbekistan
| | - Gerardo Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Maqsud N Sayfiyev
- Department of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Dilshod A Ziyaev
- Department of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Zulayho Smanova
- Department of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Alicja Mikolajczyk
- Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Gdansk 80-308, Poland
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
- Department of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| |
Collapse
|
3
|
Erickson M, Casañola-Martin G, Han Y, Rasulev B, Kilin D. Relationships between the Photodegradation Reaction Rate and Structural Properties of Polymer Systems. J Phys Chem B 2024; 128:2190-2200. [PMID: 38386478 DOI: 10.1021/acs.jpcb.3c06854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we develop a procedure to better understand the photodegradation reactions combining density functional theory (DFT) based time-dependent excited-state molecular dynamics (TDESMD) studies with machine learning-based quantitative structure-activity relationships (QSAR) methodology. This procedure allows for the unveiling of hidden structural features between active orbitals that affect the rate of photodegradation and is coined InfoTDESMD. Findings show that electrotopological features are influential factors affecting the rate of photodegradation in differing environments. Additionally, statistical validations and knowledge-based analysis of descriptors are conducted to further understand the structural features' influence on the rate of photodegradation of polymeric materials.
Collapse
Affiliation(s)
- Meade Erickson
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Gerardo Casañola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
4
|
Zheng Y, Han Y, Weight BM, Lin Z, Gifford BJ, Zheng M, Kilin D, Kilina S, Doorn SK, Htoon H, Tretiak S. Photochemical spin-state control of binding configuration for tailoring organic color center emission in carbon nanotubes. Nat Commun 2022; 13:4439. [PMID: 35915090 PMCID: PMC9343348 DOI: 10.1038/s41467-022-31921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Incorporating fluorescent quantum defects in the sidewalls of semiconducting single-wall carbon nanotubes (SWCNTs) through chemical reaction is an emerging route to predictably modify nanotube electronic structures and develop advanced photonic functionality. Applications such as room-temperature single-photon emission and high-contrast bio-imaging have been advanced through aryl-functionalized SWCNTs, in which the binding configurations of the aryl group define the energies of the emitting states. However, the chemistry of binding with atomic precision at the single-bond level and tunable control over the binding configurations are yet to be achieved. Here, we explore recently reported photosynthetic protocol and find that it can control chemical binding configurations of quantum defects, which are often referred to as organic color centers, through the spin multiplicity of photoexcited intermediates. Specifically, photoexcited aromatics react with SWCNT sidewalls to undergo a singlet-state pathway in the presence of dissolved oxygen, leading to ortho binding configurations of the aryl group on the nanotube. In contrast, the oxygen-free photoreaction activates previously inaccessible para configurations through a triplet-state mechanism. These experimental results are corroborated by first principles simulations. Such spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites. Chemical functionalization of the sidewalls of single-wall carbon nanotubes (SWCNTs) is an emerging route to introduce fluorescent quantum defects and tailor the emission properties. Here, authors demonstrate that spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites.
Collapse
Affiliation(s)
- Yu Zheng
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Braden M Weight
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA.,Department of Physics, North Dakota State University, Fargo, ND, 58102, USA.,Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Zhiwei Lin
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Brendan J Gifford
- Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. .,Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
5
|
Erickson M, Han Y, Rasulev B, Kilin D. Molecular Dynamics Study of the Photodegradation of Polymeric Chains. J Phys Chem Lett 2022; 13:4374-4380. [PMID: 35544382 DOI: 10.1021/acs.jpclett.2c00802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we conduct density functional theory (DFT) studies with periodic boundary conditions on microscopic structures involved in the photodegradation of polymeric chains incorporating FDCA and 2-nitro-1,3-benzenedimethanol. The photodegradation process of polymeric chains is studied using time-dependent excited-state molecular dynamics (TDESMD) in vacuum and aqueous environments. Changes in the photophysical properties for reaction intermediates are characterized by ground-state observables. The distribution of reaction intermediates and products is obtained from TDESMD trajectories using cheminformatics techniques. Results show that a higher degree of polymeric chain degradation is achieved in the vacuum environment. Additionally, one finds that the FDCA molecule is recoverable in the aqueous environment, in qualitative agreement with experimental findings.
Collapse
Affiliation(s)
- Meade Erickson
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
6
|
Han Y, Kilin DS. Nonradiative Relaxation Dynamics of a Cesium Lead Halide Perovskite Photovoltaic Architecture: Effect of External Electric Fields. J Phys Chem Lett 2020; 11:9983-9989. [PMID: 33179930 DOI: 10.1021/acs.jpclett.0c02973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lead halide perovskites have attracted much attention as an active material in solar cells. In this first-principles study, we consider a cesium lead halide perovskite slab interfacing with electron transport and hole transport layers, relevant to the practical photovoltaic architecture. We apply external electric fields normal to the surface of the perovskite slab and explore the induced changes onto optoelectronic properties. It is found that the bandgap increases linearly and the conductivity diminishes exponentially with decreasing electric field strengths. Furthermore, we study the influence of electric fields onto nonradiative relaxation of photoexcited electrons and holes using the reduced density matrix in the formalism of Redfield theory. Our calculations provide relaxation rates and relaxation pathways, illustrating the mechanisms of modulations of electric field strengths onto charge carrier dynamics. Our results show that holes have longer lifetimes than electrons at various external electric fields. It is also found that the patterns of charge carrier dynamics depend on the direction of external electric fields. Specifically, in comparison with the system under zero field, our findings show that (i) the positive electric field facilitates the relaxation of electrons and holes and (ii) the negative electric field facilitates the relaxation of electrons but inhibits the relaxation of holes.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
7
|
Fatima, Vogel DJ, Han Y, Inerbaev TM, Oncel N, Kilin DS. First-principles study of electron dynamics with explicit treatment of momentum dispersion on Si nanowires along different directions. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1538624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Fatima
- Department of Physics & Astrophysics, University of North Dakota, Grand Forks, ND, USA
| | - Dayton J. Vogel
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Talgat M. Inerbaev
- Faculty of Physics and Technical Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Nuri Oncel
- Department of Physics & Astrophysics, University of North Dakota, Grand Forks, ND, USA
| | - Dmitri S. Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
8
|
Han Y, Anderson K, Hobbie EK, Boudjouk P, Kilin DS. Unraveling Photodimerization of Cyclohexasilane from Molecular Dynamics Studies. J Phys Chem Lett 2018; 9:4349-4354. [PMID: 30004709 DOI: 10.1021/acs.jpclett.8b01691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoinduced reactions of a pair of cyclohexasilane (CHS) monomers are explored by time-dependent excited-state molecular dynamics (TDESMD) calculations. In TDESMD trajectories, one observes vivid reaction events including dimerization and fragmentation. A general reaction pathway is identified as (i) ring-opening formation of a dimer, (ii) rearrangement induced by bond breaking, and (iii) decomposition through the elimination of small fragments. The identified pathway supports the chemistry proposed for the fabrication of silicon-based materials using CHS as a precursor. In addition, we find dimers have smaller HOMO-LUMO gaps and exhibit a red shift and line-width broadening in the computed photoluminescence spectra compared with a pair of CHS monomers.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Kenneth Anderson
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Erik K Hobbie
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Philip Boudjouk
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| |
Collapse
|
9
|
Lystrom L, Zhang Y, Tretiak S, Nelson T. Site-Specific Photodecomposition in Conjugated Energetic Materials. J Phys Chem A 2018; 122:6055-6061. [DOI: 10.1021/acs.jpca.8b04381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Levi Lystrom
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Yu Zhang
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
10
|
Crespo-Otero R, Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem Rev 2018; 118:7026-7068. [DOI: 10.1021/acs.chemrev.7b00577] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | |
Collapse
|
11
|
Disrud B, Han Y, Gifford BJ, Kilin DS. Molecular dynamics of reactions between (4,0) zigzag carbon nanotube and hydrogen peroxide under extreme conditions. Mol Phys 2018. [DOI: 10.1080/00268976.2017.1420258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Brendon Disrud
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Brendan J. Gifford
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Dmitri S. Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
12
|
Han Y, Vogel DJ, Inerbaev TM, May PS, Berry MT, Kilin DS. Photoinduced dynamics to photoluminescence in Ln3+ (Ln = Ce, Pr) doped β-NaYF4 nanocrystals computed in basis of non-collinear spin DFT with spin-orbit coupling. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1416193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yulun Han
- Department of Chemistry, University of South Dakota, Vermillion, SD, USA
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Dayton J. Vogel
- Department of Chemistry, University of South Dakota, Vermillion, SD, USA
| | - Talgat M. Inerbaev
- Faculty of Physics and Technical Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Faculty of Physics and Technical Sciences, National University of Science and Technology “MISIS”, Moscow, Russian Federation
| | - P. Stanley May
- Department of Chemistry, University of South Dakota, Vermillion, SD, USA
| | - Mary T. Berry
- Department of Chemistry, University of South Dakota, Vermillion, SD, USA
| | - Dmitri S. Kilin
- Department of Chemistry, University of South Dakota, Vermillion, SD, USA
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
13
|
Han Y, Meng Q, Rasulev B, May PS, Berry MT, Kilin DS. Photoinduced Charge Transfer versus Fragmentation Pathways in Lanthanum Cyclopentadienyl Complexes. J Chem Theory Comput 2017. [DOI: 10.1021/acs.jctc.7b00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yulun Han
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Qingguo Meng
- Shenyang
Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Bakhtiyor Rasulev
- Center
for Computationally Assisted Science and Technology, North Dakota State University, Fargo, North Dakota 58102, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - P. Stanley May
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Mary T. Berry
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Dmitri S. Kilin
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
14
|
Han Y, Rasulev B, Kilin DS. Photofragmentation of Tetranitromethane: Spin-Unrestricted Time-Dependent Excited-State Molecular Dynamics. J Phys Chem Lett 2017; 8:3185-3192. [PMID: 28618779 DOI: 10.1021/acs.jpclett.7b01330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the photofragmentation dynamics of tetranitromethane (TNM) is explored by a spin-unrestricted time-dependent excited-state molecular dynamics (u-TDESMD) algorithm based on Rabi oscillations and principles similar to trajectory surface hopping, with a midintensity field approximation. The leading order process is represented by the molecule undergoing cyclic excitations and de-excitations. During excitation cycles, the nuclear kinetic energy is accumulated to overcome the dissociation barriers in the reactant and a sequence of intermediates. The dissociation pathway includes the ejection of NO2 groups followed by the formation of NO and CO. The simulated mass spectra at the ab initio level, based on the bond length in possible fragments, are extracted from simulation trajectories. The recently developed methodology has the potential to model and monitor photoreactions with open-shell intermediates and radicals.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry, University of South Dakota , Vermillion, South Dakota 57069, United States
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Dmitri S Kilin
- Department of Chemistry, University of South Dakota , Vermillion, South Dakota 57069, United States
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| |
Collapse
|
15
|
Disrud B, Han Y, Kilin DS. Molecular dynamics of laser-assisted decomposition of unstable molecules at the surface of carbon nanotubes: case study of CH2(NO2)2 on CNT(4,0). Mol Phys 2017. [DOI: 10.1080/00268976.2017.1290838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Brendon Disrud
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, ND, USA
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, ND, USA
- Department of Chemistry, University of South Dakota, Vermillion, SD, USA
| | - Dmitri S. Kilin
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, ND, USA
- Department of Chemistry, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
16
|
Sapp W, Gifford B, Wang Z, Kilin DS. Mathematical modeling of gas desorption from a metal–organic supercontainer cavity filled with stored N2gas at critical limits. RSC Adv 2017. [DOI: 10.1039/c6ra21876h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gas escape rates from within the cavity of a MOSC were predicted by molecular dynamics and analytical equations.
Collapse
Affiliation(s)
- Wendi Sapp
- Department of Chemistry
- University of South Dakota
- Vermillion
- USA
| | - Brendan Gifford
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Zhenqiang Wang
- Department of Chemistry
- University of South Dakota
- Vermillion
- USA
| | - Dmitri S. Kilin
- Department of Chemistry
- University of South Dakota
- Vermillion
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|
17
|
Han Y, Kilin DS, May PS, Berry MT, Meng Q. Photofragmentation Pathways for Gas-Phase Lanthanide Tris(isopropylcyclopentadienyl) Complexes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yulun Han
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Dmitri S. Kilin
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - P. Stanley May
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Mary T. Berry
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Qingguo Meng
- Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| |
Collapse
|
18
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Rashwan K, Sereda G, Kilin D. Adsorption patterns of caffeic acid on titania: affinity, charge transfer and sunscreen applications. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1104392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|