1
|
Patra K, Brennessel WW, Matson EM. p Ka of alcohols dictates their reactivity with reduced uranium-substituted thiomolybdate clusters. Dalton Trans 2025; 54:966-976. [PMID: 39589834 DOI: 10.1039/d4dt02803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
The uranium-substituted thiomolybdate cluster, (Cp*3Mo3S4)UCp*, has been demonstrated as a model for water reduction by single uranium atoms supported on a molybdenum sulfide surface (U@MoS2). In this study, the scope of O-H bond activation is expanded through the investigation of the reactivity of various alcohols with differing pKa values for the -OH proton. The reaction of (Cp*3Mo3S4)UCp* with stoichiometric amounts of methanol, phenol, 2,6-dichlorophenol, and nonafluoro-tert-butyl alcohol affords the corresponding mono-alkoxide species, (Cp*3Mo3S4)Cp*U(OR), via a uranium-metalloligand cooperative activation of the O-H bond. This observed reactivity is analogous to the O-H bond activation reported by (Cp*3Mo3S4)UCp* in the presence of water. However, addition of tert-butanol induces protonolysis of the Cp* ligand on uranium, resulting in the formation of a uranium tris-tert-butoxide cluster, (Cp*3Mo3S4)U(OtBu)3. Independent synthesis of (Cp*3Mo3S4)Cp*U(OtBu) was possible via an alternative pathway, eliminating sterics as a justification for the observed discrepancy in reactivity. These results offer insight into the role the -OH proton pKa plays in dictating the mechanism of O-H bond activation of alcohols by the uranium-substituted thiomolybdate cluster.
Collapse
Affiliation(s)
- Kamaless Patra
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
| | | | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
2
|
Burkhardt J, Li WL. Theoretical Investigation on One-Electron ϕ···ϕ Bonding in Diuranium Inverse Sandwich U 2B 6 Complex Enabled by a B 6 Ring. Inorg Chem 2024; 63:18313-18322. [PMID: 39285662 PMCID: PMC11445727 DOI: 10.1021/acs.inorgchem.4c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Traditional σ, π, and δ types of covalent chemical bonding have been extensively studied for nearly a century. In contrast, ϕ-type bonding involving nf (n = 4, 5) orbitals has received less attention due to their high contraction and minimal orbital overlap. Herein, we theoretically predict a singly occupied ϕ···ϕ bonding between two 5f orbitals, facilitated by B6 group orbitals in the hexa-boron diuranium inverse sandwich structure of U2B6. From ab initio quantum chemical calculations, the global minimum structure has a septuplet state with D6h symmetry. Chemical bonding analyses reveal that the 5f and 6d atomic orbitals of the two uranium atoms interact with the ligand orbitals of the central B6 ring, exhibiting favorable energy matching and symmetry compatibility to form delocalized σ-, π-, δ-, and ϕ-type bonding orbitals. Notably, even though the ϕ···ϕ bonding orbital is singly occupied, it still has a significant role in stability and cannot be overlooked. Furthermore, the U2B6 cluster model can be viewed as a building block of UB2 solid materials from both geometric and electronic perspectives. This work predicts the first example of ϕ···ϕ bonding, highlighting the complexity and diversity of chemical bonds formed in actinide boride clusters.
Collapse
Affiliation(s)
- Jordan Burkhardt
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Wan-Lu Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Patra K, Brennessel WW, Matson EM. Molecular Models of Atomically Dispersed Uranium at MoS 2 Surfaces Reveal Cooperative Mechanism of Water Reduction. J Am Chem Soc 2024; 146:20147-20157. [PMID: 38984489 PMCID: PMC11273346 DOI: 10.1021/jacs.4c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Single atoms of uranium supported on molybdenum sulfide surfaces (U@MoS2) have been recently demonstrated to facilitate the hydrogen evolution reaction (HER) through electrocatalysis. Theoretical calculations have predicted uranium hydroxide moieties bound to edge-sulfur atoms of MoS2 as a proposed transition state involved in the HER process. However, the isolation of relevant intermediates involved in this process remains a challenge, rendering mechanistic hypotheses unverified. The present work describes the isolation and characterization of a uranium-hydroxide intermediate on molybdenum sulfide surfaces using [(Cp*3Mo3S4)UCp*], a molecular model of a reduced uranium center supported at MoS2. Mechanistic investigations highlight the metalloligand cooperativity with uranium involved in the water activation pathway. The corresponding uranium-oxo analogue, [(Cp*3Mo3S4)Cp*U(═O)], was also accessed from the hydroxide cluster via hydrogen atom transfer and from [(Cp*3Mo3S4)UCp*] through an alternative direct oxygen atom transfer. These results provide an atomistic perspective on the reactivity of low-valent uranium at molybdenum sulfide surfaces toward water, modeling key intermediates associated with the HER of U@MoS2 catalysts.
Collapse
Affiliation(s)
- Kamaless Patra
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Harris RM, Zhu Z, Tufekci BA, Deepika, Jena P, Peterson KA, Bowen KH. Electronic Structure and Anion Photoelectron Spectroscopy of Uranium-Gold Clusters UAu n-, n = 3-7. J Phys Chem A 2023; 127:7186-7197. [PMID: 37590893 DOI: 10.1021/acs.jpca.3c03452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A collaborative effort between experiment and theory toward elucidating the electronic and molecular structures of uranium-gold clusters is presented. Anion photoelectron spectra of UAun-(n = 3-7) were taken at the third (355 nm) and fourth (266 nm) harmonics of a Nd:YAG laser, as well as excimer (ArF 193 nm) photon energies, where the experimental adiabatic electron affinities and vertical detachment energies values were measured. Complementary first-principles calculations were subsequently carried out to corroborate experimentally determined electron detachment energies and to determine the geometry and electronic structure for each cluster. Except for the ring-like neutral isomer of UAu6 where one unpaired electron is spread over the Au atoms, all other neutral and anionic UAun clusters (n = 3-7) were calculated to possess open-shell electrons with the unpaired electrons localized on the central U atom. The smaller clusters closely resemble the analogous UFn species, but significant deviations are seen starting with UAu5 where a competition between U-Au and Au-Au bonding begins to become apparent. The UAu6 system appears to mark a transition where Au-Au interactions begin to dominate, where both a ring-like and two heavily distorted octahedral structures around the central U atom are calculated to be nearly isoenergetic. With UAu7, only ring-like structures are calculated. Overall, the calculated electron detachment energies are in good agreement with the experimental values.
Collapse
Affiliation(s)
- Rachel M Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Deepika
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Purusottam Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Rodriguez VG, Culbertson HJ, Sigmon GE, Burns PC. Electrochemistry of Uranyl Peroxide Solutions during Electrospray Ionization. Inorg Chem 2023; 62:4456-4466. [PMID: 36888551 DOI: 10.1021/acs.inorgchem.2c03904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The ionization of uranyl triperoxide monomer, [(UO2)(O2)3]4- (UT), and uranyl peroxide cage cluster, [(UO2)28(O2)42 - x(OH)2x]28- (U28), was studied with electrospray ionization mass spectrometry (ESI-MS). Experiments including tandem mass spectrometry with collision-induced dissociation (MS/CID/MS), use of natural water and D2O as solvent, and use of N2 and SF6 as nebulizer gases, provide insight into the mechanisms of ionization. The U28 nanocluster under MS/CID/MS with collision energies ranging from 0 to 25 eV produced the monomeric units UOx- (x = 3-8) and UOxHy- (x = 4-8, y = 1, 2). UT under ESI conditions yielded the gas-phase ions UOx- (x = 4-6) and UOxHy- (x = 4-8, y = 1-3). Mechanisms that produce the observed anions in the UT and U28 systems are: (a) gas-phase combinations of uranyl monomers in the collision cell upon fragmentation of U28, (b) reduction-oxidation resulting from the electrospray process, and (c) ionization of surrounding analytes, creating reactive oxygen species that then coordinate to uranyl ions. The electronic structures of anions UOx- (x = 6-8) were investigated using density functional theory (DFT).
Collapse
Affiliation(s)
- Virginia G Rodriguez
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Heather J Culbertson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Hong J, Han C, Fei Z, Tang Y, Liu Y, Xu HG, Wang M, Liu H, Xiong XG, Dong C. The additional nitrogen atom breaks the uranyl structure: a combined photoelectron spectroscopy and theoretical study of NUO 2. Phys Chem Chem Phys 2023; 25:4794-4802. [PMID: 36692210 DOI: 10.1039/d2cp05544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report a joint photoelectron spectroscopic and relativistic quantum chemistry study on gaseous NUO2-. The electron affinity (EA) of the neutral NUO2 molecule is reported for the first time with a value of 2.602(28) eV. The U-O and U-N stretching vibrational modes for the ground state and the first excited state are observed for NUO2. The geometric and electronic structures of both the anions and the corresponding neutrals are investigated by relativistic quantum chemistry calculations to interpret the photoelectron spectra and to provide insights into the nature of the chemical bonding. Both the ground state of the anion and neutral are calculated to be planar structures with C2v symmetry. Unlike the "T"-shape structure of UO3 which has a quasi-linear O-U-O angle, both the ground-state geometries of the anion and neutral have O-U-O bond angles of around 90°. The significant contraction of the O-U-O bond angle indicates the strong interaction between the U and N atoms compared with the "additional" oxygen in UO3. The chemical bonding calculation indicates that multiple bonding of U(VI) can occur in NUO2- and NUO2, and the UVI-N bond is significantly more covalent than the U-O bond. The current experimental and theoretical results reveal the difference between the U-N and U-O bond in the unified molecular system, and expand our understanding of the bonding capacities of actinide elements with the nitrogen atom.
Collapse
Affiliation(s)
- Jing Hong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changcai Han
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai, 200092, P. R. China
| | - Zejie Fei
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| | - Yuanyuan Tang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| | - Yancheng Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingqing Wang
- Yankuang New Energy R&D Innovation Centre, Shandong Energy Group Co., LTD, China
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| | - Xiao-Gen Xiong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China.
| | - Changwu Dong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| |
Collapse
|
7
|
Niklas JE, Studvick CM, Bacsa J, Popov IA, La Pierre HS. Ligand Control of Oxidation and Crystallographic Disorder in the Isolation of Hexavalent Uranium Mono-Oxo Complexes. Inorg Chem 2023; 62:2304-2316. [PMID: 36668669 DOI: 10.1021/acs.inorgchem.2c04056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of high-valent transuranic chemistry requires robust methodologies to access and fully characterize reactive species. We have recently demonstrated that the reducing nature of imidophosphorane ligands supports the two-electron oxidation of U4+ to U6+ and established the use of this ligand to evaluate the inverse-trans-influence (ITI) in actinide metal-ligand multiple bond (MLMB) complexes. To extend this methodology and analysis to transuranic complexes, new small-scale synthetic strategies and lower-symmetry ligand derivatives are necessary to improve crystallinity and reduce crystallographic disorder. To this end, the synthesis of two new imidophosphorane ligands, [N═PtBu(pip)2]- (NPC1) and [N═PtBu(pyrr)2]- (NPC2) (pip = piperidinyl; pyrr = pyrrolidinyl), is presented, which break pseudo-C3 axes in the tetravalent complexes, U[NPC1]4 and U[NPC2]4. The reaction of these complexes with two-electron oxygen-atom-transfer reagents (N2O, trimethylamine N-oxide (TMAO) and 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene (dbabhNO)) yields the U6+ mono-oxo complexes U(O)[NPC1]4 and U(O)[NPC2]4. This methodology is optimized for direct translation to transuranic elements. Of the two ligands, the NPC2 framework is most suitable for facilitating detailed bonding analysis and assessment of the ITI. Theoretical evaluation of the U-(NPC) bonding confirms a substantial difference between axially and equatorially bonded N atoms, revealing markedly more covalent U-Nax interactions. The U 6d + 5f combined contribution for U-Nax is nearly double that of U-Neq, accounting for ITI shortening and increased bond order of the axial bond. Two distinct N-atom hybridizations in the pyrrolidine/piperidine rings are noted across the complexes, with approximate sp2 and sp3 configurations describing the slightly shorter P-N"planar" and slightly longer P-N"pyramidal" bonds, respectively. In all complexes, the NPC2 ligands feature more planar N atoms than NPC1, in accordance with a higher electron-donating capacity of the former.
Collapse
Affiliation(s)
- Julie E Niklas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Chad M Studvick
- Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United States
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Ivan A Popov
- Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United States
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.,Nuclear and Radiological Engineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
8
|
Lu JB, Jiang XL, Wang JQ, Hu HS, Schwarz WHE, Li J. On the highest oxidation states of the actinoids in AnO 4 molecules (An = Ac - Cm): A DMRG-CASSCF study. J Comput Chem 2023; 44:190-198. [PMID: 35420170 DOI: 10.1002/jcc.26856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
Actinoid tetroxide molecules AnO4 (An = Ac - Cm) are investigated with the ab initio density matrix renormalization group (DMRG) approach. Natural orbital shapes are used to read out the oxidation state (OS) of the f-elements, and the atomic orbital energies and radii are used to explain the trends. The highest OSs reveal a "volcano"-type variation: For An = Ac - Np, the OSs are equal to the number of available valence electrons, that is, AcIII , ThIV , PaV , UVI , and NpVII . Starting with plutonium as the turning point, the highest OSs in the most stable AnO4 isomers then decrease as PuV , AmV , and CmIII , indicating that the 5f-electrons are hard to be fully oxidized off from Pu onward. The variations are related to the actinoid contraction and to the 5f-covalency characteristics. Combined with previous work on OSs, we review their general trends throughout the periodic table, providing fundamental understanding of OS-relevant phenomena.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen.,Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - Xue-Lian Jiang
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen
| | - Jia-Qi Wang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing.,Theoretische Chemie, Fachbereich Chemie und Biologie, Universität Siegen, Siegen, Germany
| | - Jun Li
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen.,Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| |
Collapse
|
9
|
Li F, Qin J, Qiu R, Shuai M, Pu Z. Matrix-Isolation Infrared Spectra and Electronic Structure Calculations for Dinitrogen Complexes with Uranium Trioxide Molecules UO 3(η 1-NN) 1-4. Inorg Chem 2022; 61:11075-11083. [PMID: 35833920 DOI: 10.1021/acs.inorgchem.2c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigations of the interactions of uranium trioxide (UO3) with other species are expected to provide a new perspective on its reaction and bonding behaviors. Herein, we present a combined matrix-isolation infrared spectroscopy and theoretical study of the geometries, vibrational frequencies, electronic structures, and bonding patterns for a series of dinitrogen (N2) complexes with UO3 moieties UO3(η1-NN)1-4. The complexes are prepared by reactions of laser-ablated uranium atoms with O2/N2 mixtures or laser-ablated UO3 molecules with N2 in solid argon. UO3(η1-NN)1-4 are classified as "nonclassical" metal-N2 complexes with increased Δν(N2) values according to the experimental observations and the computed blue-shifts of N-N stretching frequencies and N-N bond length contractions. Electronic structure analysis suggests that UO3(η1-NN)1-4 are σ-only complexes with a total lack of π-back-donation. The energy decomposition analysis combined with natural orbitals for chemical valence calculations reveal that the bonding between the UO3 moiety and N2 ligands in UO3(η1-NN)1-4 arises from the roughly equal electrostatic attractions and orbital mixings. The inspection of orbital interactions from pairwise contributions indicates that the strongest orbital stabilization comes from the σ-donations of the 4σ*- and 5σ-based ligand molecular orbitals (MOs) into the hybrid 7s/6dx2-y2 MO of the U center. The electron polarization induced by electrostatic effects in the Ninner ← Nouter direction provides complementary contributions to the orbital stabilization in UO3(η1-NN)1-4. In addition, the reactions of UO3 with N2 ligands and the origination of the nonclassical behavior in UO3(η1-NN)1-4 are discussed.
Collapse
Affiliation(s)
- Fang Li
- School of Material Science and Engineering, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, P. R. China
| | - Jianwei Qin
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China.,Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Ruizhi Qiu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China.,Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| | - Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| |
Collapse
|
10
|
Wang ZL, Chen TT, Chen WJ, Li WL, Zhao J, Jiang XL, Li J, Wang LS, Hu HS. The smallest 4f-metalla-aromatic molecule of cyclo-PrB 2− with Pr–B multiple bonds. Chem Sci 2022; 13:10082-10094. [PMID: 36128247 PMCID: PMC9430590 DOI: 10.1039/d2sc02852b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
The concept of metalla-aromaticity proposed by Thorn–Hoffmann (Nouv. J. Chim. 1979, 3, 39) has been expanded to organometallic molecules of transition metals that have more than one independent electron-delocalized system. Lanthanides, with highly contracted 4f atomic orbitals, are rarely found in multiply aromatic systems. Here we report the discovery of a doubly aromatic triatomic lanthanide-boron molecule PrB2− based on a joint photoelectron spectroscopy and quantum chemical investigation. Global minimum structural searches reveal that PrB2− has a C2v triangular structure with a paramagnetic triplet 3B2 electronic ground state, which can be viewed as featuring a trivalent Pr(III,f2) and B24−. Chemical bonding analyses show that this cyclo-PrB2− species is the smallest 4f-metalla-aromatic system exhibiting σ and π double aromaticity and multiple Pr–B bonding characters. It also sheds light on the formation of the rare B24− tetraanion by the high-lying 5d orbitals of the 4f-elements, completing the isoelectronic B24−, C22−, N2, and O22+ series. We report the smallest 4f-metalla-aromatic molecule of PrB2− exhibiting σ and π double aromaticity and multiple Pr–B bond characters.![]()
Collapse
Affiliation(s)
- Zhen-Ling Wang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Teng-Teng Chen
- Department of Chemistry, Brown University, Providence 02912, Rhode Island, USA
| | - Wei-Jia Chen
- Department of Chemistry, Brown University, Providence 02912, Rhode Island, USA
| | - Wan-Lu Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jing Zhao
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Xue-Lian Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence 02912, Rhode Island, USA
| | - Han-Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Liu G, Zhang C, Ciborowski SM, Asthana A, Cheng L, Bowen KH. Mapping the Electronic Structure of the Uranium(VI) Dinitride Molecule, UN 2. J Phys Chem A 2020; 124:6486-6492. [PMID: 32700533 DOI: 10.1021/acs.jpca.0c03735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combined anion photoelectron spectroscopic and relativistic coupled-cluster computational study of the electronic structure of the UN2 molecule is presented. Because the photoelectron spectrum of the uranium dinitride negative ion, UN2-, directly reflects the electronic structure of neutral UN2, we have measured and relied upon the photoelectron spectrum of the UN2- anion as a means of mapping the electronic structure of neutral UN2. In addition to the electron affinity of the UN2 ground state, energy levels of the UN2 excited states were well characterized by the close interplay between the experiment and high-level theory. We found that both electron attachment and electronic excitation significantly bend the UN2 molecule and elongate its U≡N bond. Implications for the activation of UN2 are discussed.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ayush Asthana
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Abstract
AbstractThe past decade has been very productive in the field of actinide (An) oxides containing high-valent An. Novel gas-phase experimental and an impressive number of theoretical studies have been performed, mostly on pure oxides or oxides extended with other ligands. The review covers the structural properties of molecular An oxides with high (An≥V) oxidation states. The presented compounds include the actinide dioxide cations [AnO2]+ and [AnO2]2+, neutral and ionic AnOx (x = 3–6), oxides with more than one An atom like neutral dimers, trimers and dimers from cation–cation interactions, as well as large U-oxide clusters observed very recently in the gaseous phase.
Collapse
|
13
|
Qin JW, Zhang P, Pu Z, Hu Y, Zhang P, Shuai MB, Hu SX. Probing the Electronic Structure and Chemical Bonding of Uranium Nitride Complexes of NU–XO (X = C, N, O). J Phys Chem A 2019; 123:6958-6969. [DOI: 10.1021/acs.jpca.9b02923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-Wei Qin
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Yin Hu
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Mao-Bing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
14
|
Li Y, Zou J, Xiong XG, Xie H, Tang Z, Ge M, Zhao Y, Liu H. Anion photoelectron spectroscopy and chemical bonding of ThO2− and ThO3−. J Chem Phys 2018; 148:244304. [DOI: 10.1063/1.5030142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Yanli Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghan Zou
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiao-Gen Xiong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zichao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Min Ge
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yafan Zhao
- Institute of Applied Physics and Computational Mathematics, Beijing 10088, China
| | - Hongtao Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
15
|
Hu SX, Liu JJ, Gibson JK, Li J. Periodic Trends in Actinyl Thio-Crown Ether Complexes. Inorg Chem 2018; 57:2899-2907. [DOI: 10.1021/acs.inorgchem.7b03277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jing-Jing Liu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Huang W, Jiang N, Schwarz WHE, Yang P, Li J. Diversity of Chemical Bonding and Oxidation States in MS 4 Molecules of Group 8 Elements. Chemistry 2017; 23:10580-10589. [PMID: 28516506 DOI: 10.1002/chem.201701117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 11/11/2022]
Abstract
The geometric and electronic ground-state structures of 30 isomers of six MS4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS4 species were compared to analogous MO4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet Td geometric species (Os,Hs)S4 and (Ru,Os,Hs)O4 , whereas a low MOS of two appeared in the high-spin septet D2d species Fe(S2 )2 and (slightly excited) metastable Fe(O2 )2 . The ground states of all other molecules had intermediate MOS values, with S2- , S22- , S21- (and O2- , O1- , O22- , O21- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO4 and MS4 species provides insight into the periodicity of oxidation states and bonding.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Ning Jiang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China.,Physical and Theoretical Chemistry, University of Siegen, Siegen, 57068, Germany
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 953002, USA
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 953002, USA
| |
Collapse
|
17
|
Chen T, Li W, Jian T, Chen X, Li J, Wang L. PrB
7
−
: A Praseodymium‐Doped Boron Cluster with a Pr
II
Center Coordinated by a Doubly Aromatic Planar η
7
‐B
7
3−
Ligand. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Teng‐Teng Chen
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Wan‐Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Tian Jian
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Xin Chen
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Lai‐Sheng Wang
- Department of Chemistry Brown University Providence RI 02912 USA
| |
Collapse
|
18
|
Chen T, Li W, Jian T, Chen X, Li J, Wang L. PrB
7
−
: A Praseodymium‐Doped Boron Cluster with a Pr
II
Center Coordinated by a Doubly Aromatic Planar η
7
‐B
7
3−
Ligand. Angew Chem Int Ed Engl 2017; 56:6916-6920. [DOI: 10.1002/anie.201703111] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Teng‐Teng Chen
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Wan‐Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Tian Jian
- Department of Chemistry Brown University Providence RI 02912 USA
| | - Xin Chen
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
| | - Lai‐Sheng Wang
- Department of Chemistry Brown University Providence RI 02912 USA
| |
Collapse
|
19
|
Li Y, Zou J, Xiong XG, Su J, Xie H, Fei Z, Tang Z, Liu H. Probing Chemical Bonding and Electronic Structures in ThO - by Anion Photoelectron Imaging and Theoretical Calculations. J Phys Chem A 2017; 121:2108-2113. [PMID: 28221794 DOI: 10.1021/acs.jpca.6b11554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of renewed research on thorium-based molten salt reactors, there is growing demand and interest in enhancing the knowledge of thorium chemistry both experimentally and theoretically. Compared with uranium, thorium has few chemical studies reported up to the present. Here we report the vibrationally resolved photoelectron imaging of the thorium monoxide anion. The electron affinity of ThO is first reported to be 0.707 ± 0.020 eV. Vibrational frequencies of the ThO molecule and its anion are determined from Franck-Condon simulation. Spectroscopic evidence is obtained for the two-electron transition in ThO-, indicating the strong electron correlation among the (7sσ)2(6dδ)1 electrons in ThO- and the (7sσ)2 electrons in ThO. These findings are explained by using quantum-chemical calculations including spin-orbit coupling, and the chemical bonding of gaseous ThO molecules is analyzed. The present work will enrich our understanding of bonding capacities with the 6d valence shell.
Collapse
Affiliation(s)
- Yanli Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jinghan Zou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xiao-Gen Xiong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jing Su
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Zejie Fei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Zichao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Hongtao Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| |
Collapse
|
20
|
Hu SX, Jian J, Su J, Wu X, Li J, Zhou M. Pentavalent lanthanide nitride-oxides: NPrO and NPrO - complexes with N≡Pr triple bonds. Chem Sci 2017; 8:4035-4043. [PMID: 28580119 PMCID: PMC5434915 DOI: 10.1039/c7sc00710h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/15/2017] [Indexed: 11/21/2022] Open
Abstract
The neutral molecule NPrO and its anion NPrO- are produced via co-condensation of laser-ablated praseodymium atoms with nitric oxide in a solid neon matrix. Combined infrared spectroscopy and state-of-the-art quantum chemical calculations confirm that both species are pentavalent praseodymium nitride-oxides with linear structures that contain Pr≡N triple bonds and Pr=O double bonds. Electronic structure studies show that the neutral NPrO molecule features a 4f0 electron configuration and a Pr(v) oxidation state similar to that of the isoelectronic PrO2+ ion, while its NPrO- anion possesses a 4f1 electron configuration and a Pr(iv) oxidation state. The neutral NPrO molecule is thus a rare lanthanide nitride-oxide species with a Pr(v) oxidation state, which follows the recent identification of the first Pr(v) oxidation state in the PrO2+ and PrO4 complexes (Angew. Chem. Int. Ed., 2016, 55, 6896). This finding indicates that lanthanide compounds with oxidation states of higher than +IV are richer in chemistry than previously recognized.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Beijing Computational Science Research Center , Beijing 100094 , China.,Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education , Tsinghua University , Beijing 100084 , China .
| | - Jiwen Jian
- Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| | - Jing Su
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education , Tsinghua University , Beijing 100084 , China .
| | - Xuan Wu
- Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education , Tsinghua University , Beijing 100084 , China .
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| |
Collapse
|
21
|
de Jong WA, Dau PD, Wilson RE, Marçalo J, Van Stipdonk MJ, Corcovilos TA, Berden G, Martens J, Oomens J, Gibson JK. Revealing Disparate Chemistries of Protactinium and Uranium. Synthesis of the Molecular Uranium Tetroxide Anion, UO4–. Inorg Chem 2017; 56:3686-3694. [DOI: 10.1021/acs.inorgchem.7b00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wibe A. de Jong
- Computational Research
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phuong D. Dau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard E. Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Joaquim Marçalo
- Centro
de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela Loures, Portugal
| | - Michael J. Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Theodore A. Corcovilos
- Department of
Physics, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Giel Berden
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van ‘t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Zhang Q, Hu SX, Qu H, Su J, Wang G, Lu JB, Chen M, Zhou M, Li J. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides. Angew Chem Int Ed Engl 2016; 55:6896-900. [PMID: 27100273 DOI: 10.1002/anie.201602196] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/11/2022]
Abstract
The chemistry of lanthanides (Ln=La-Lu) is dominated by the low-valent +3 or +2 oxidation state because of the chemical inertness of the valence 4f electrons. The highest known oxidation state of the whole lanthanide series is +4 for Ce, Pr, Nd, Tb, and Dy. We report the formation of the lanthanide oxide species PrO4 and PrO2 (+) complexes in the gas phase and in a solid noble-gas matrix. Combined infrared spectroscopic and advanced quantum chemistry studies show that these species have the unprecedented Pr(V) oxidation state, thus demonstrating that the pentavalent state is viable for lanthanide elements in a suitable coordination environment.
Collapse
Affiliation(s)
- Qingnan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Shu-Xian Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Hui Qu
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jing Su
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Mohua Chen
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Zhang Q, Hu SX, Qu H, Su J, Wang G, Lu JB, Chen M, Zhou M, Li J. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingnan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Shu-Xian Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Hui Qu
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Jing Su
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Mohua Chen
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| |
Collapse
|
24
|
Huang W, Xu WH, Schwarz WHE, Li J. On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu). Inorg Chem 2016; 55:4616-25. [PMID: 27074099 DOI: 10.1021/acs.inorgchem.6b00442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Wen-Hua Xu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - W H E Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|
25
|
Lu JB, Jian J, Huang W, Lin H, Li J, Zhou M. Experimental and theoretical identification of the Fe(vii) oxidation state in FeO4−. Phys Chem Chem Phys 2016; 18:31125-31131. [DOI: 10.1039/c6cp06753k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two isomers of iron tetraoxygen anion, dioxoiron peroxide [(η2-O2)FeO2]− and tetroxide FeO4− were characterized by experiment and theoretical calculations, with heptavalent Fe(vii) oxidation state identified in the later.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Jiwen Jian
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials
- Fudan University
- Shanghai 200433
| | - Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Hailu Lin
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials
- Fudan University
- Shanghai 200433
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials
- Fudan University
- Shanghai 200433
| |
Collapse
|