2
|
Mizoguchi M, Zhang Y, Kunimi M, Tanaka A, Takeda S, Takei N, Bharti V, Koyasu K, Kishimoto T, Jaksch D, Glaetzle A, Kiffner M, Masella G, Pupillo G, Weidemüller M, Ohmori K. Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice. PHYSICAL REVIEW LETTERS 2020; 124:253201. [PMID: 32639753 DOI: 10.1103/physrevlett.124.253201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
We study an array of ultracold atoms in an optical lattice (Mott insulator) excited with a coherent ultrashort laser pulse to a state where single-electron wave functions spatially overlap. Beyond a threshold principal quantum number where Rydberg orbitals of neighboring lattice sites overlap with each other, the atoms efficiently undergo spontaneous Penning ionization resulting in a drastic change of ion-counting statistics, sharp increase of avalanche ionization, and the formation of an ultracold plasma. These observations signal the actual creation of electronic states with overlapping wave functions, which is further confirmed by a significant difference in ionization dynamics between a Bose-Einstein condensate and a Mott insulator. This system is a promising platform for simulating electronic many-body phenomena dominated by Coulomb interactions in the condensed phase.
Collapse
Affiliation(s)
- M Mizoguchi
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Y Zhang
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - M Kunimi
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - A Tanaka
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - S Takeda
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - N Takei
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - V Bharti
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - K Koyasu
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - T Kishimoto
- Department of Engineering Science and Institute for Advanced Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - D Jaksch
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - A Glaetzle
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - M Kiffner
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - G Masella
- icFRC and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - G Pupillo
- icFRC and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - M Weidemüller
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - K Ohmori
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
3
|
Dulitz K, van den Beld-Serrano M, Stienkemeier F. Single-Source, Collinear Merged-Beam Experiment for the Study of Reactive Neutral–Neutral Collisions. J Phys Chem A 2020; 124:3484-3493. [DOI: 10.1021/acs.jpca.0c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katrin Dulitz
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | | | - Frank Stienkemeier
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Ohayon B, Rahangdale H, Chocron J, Mishnayot Y, Kosloff R, Heber O, Ron G. Imaging Recoil Ions from Optical Collisions between Ultracold, Metastable Neon Isotopes. PHYSICAL REVIEW LETTERS 2019; 123:063401. [PMID: 31491183 DOI: 10.1103/physrevlett.123.063401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/12/2019] [Indexed: 06/10/2023]
Abstract
We present an experimental scheme that combines the well-established method of velocity-map imaging with a cold trapped metastable neon target. The device is used for obtaining the branching ratios and recoil-ion energy distributions for the penning ionization process in optical collisions of ultracold metastable neon. The potential depth of the highly excited dimer potential is extracted and compared with theoretical calculations. The simplicity to construct, characterize, and apply such a device makes it a unique tool for the low-energy nuclear physics community, enabling opportunities for precision measurements in nuclear decays of cold, trapped, short-lived radioactive isotopes.
Collapse
Affiliation(s)
- B Ohayon
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - H Rahangdale
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - J Chocron
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - Y Mishnayot
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
- Soreq Nuclear Research Center, Yavne 81800, Israel
| | - R Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - O Heber
- The Weizmann Institute of Science, Rehovot 76100, Israel
| | - G Ron
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Abstract
We demonstrate a method to probe cold and ultracold chemistry in a single molecular beam. The approach exploits beam slippage, the velocity difference of different species in the same beam, to establish the relative velocity. Average collision energies of 2.5 mK are achieved but with a spread of 100% or more. However, by implementing a dual-slit chopper that can separately fix the velocities of the two species at the interaction region, we achieve precise control over the relative velocity and narrow its spread. Relative velocities of 7-10 ± 1.1 m/s are achieved with an angular divergence less than 0.25°. In the present study, we observe l-changing collisions occurring between Xe Rydberg atoms and Xe ground state atoms at subKelvin temperatures. We show that in this case the collision energies are tunable between 200 to 450 mK with a root-mean-square deviation of ∼18%. Application of the method to other species and access to much lower energies is straightforward.
Collapse
Affiliation(s)
- Chandika Amarasinghe
- Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Arthur G Suits
- Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|