1
|
Gelfand N, Remacle F, Levine RD. Ultrafast charge migration in the laser induced dynamics of LiH validated by a computation-free isotope effect. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Haase D, Manz J, Tremblay JC. Attosecond Charge Migration Can Break Electron Symmetry While Conserving Nuclear Symmetry. J Phys Chem A 2020; 124:3329-3334. [DOI: 10.1021/acs.jpca.0c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dietrich Haase
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR7019, 57070 Metz, France
| |
Collapse
|
3
|
Jia D, Manz J, Yang Y. Timing the recoherences of attosecond electronic charge migration by quantum control of femtosecond nuclear dynamics: A case study for HCCI . J Chem Phys 2019; 151:244306. [PMID: 31893866 DOI: 10.1063/1.5134665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This work suggests an approach to a new target of laser control of charge migration in molecules or molecular ions. The target is motivated by the fact that nuclear motions can not only cause decoherence of charge migration, typically within few femtoseconds, but they may also enable the reappearance of charge migration after much longer times, typically several tens or even hundreds of femtoseconds. This phenomenon is called recoherence of charge migration, opposite to its decoherence. The details depend on the initiation of the original charge migration by an ultrashort strong intense pump laser pulse. It may reappear quasiperiodically, with reference period Tr. We show that a well-designed pump-dump laser pulse can enforce recoherences of charge migration at different target times Tc, for example, at Tc ≈ Tr/2. The approach is demonstrated by quantum dynamics simulations of the laser driven electronic and nuclear motions in the oriented linear cation HCCI+. First, the concept is explained in terms of a didactic one-dimensional (1D) model that accounts for the decisive CI stretch. The 1D results are then confirmed by a three-dimensional model for the complete set of the CH, CC, and CI stretches.
Collapse
Affiliation(s)
- Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
4
|
van den Wildenberg S, Mignolet B, Levine RD, Remacle F. Temporal and spatially resolved imaging of the correlated nuclear-electronic dynamics and of the ionized photoelectron in a coherently electronically highly excited vibrating LiH molecule. J Chem Phys 2019; 151:134310. [DOI: 10.1063/1.5116250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephan van den Wildenberg
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
| | - Benoit Mignolet
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
| | - R. D. Levine
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - F. Remacle
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Mignolet B, Curchod BFE. Excited-State Molecular Dynamics Triggered by Light Pulses—Ab Initio Multiple Spawning vs Trajectory Surface Hopping. J Phys Chem A 2019; 123:3582-3591. [DOI: 10.1021/acs.jpca.9b00940] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benoit Mignolet
- Theoretical Physical Chemistry, UR MolSYS, B6c, University of Liège, B4000 Liège, Belgium
| | - Basile F. E. Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Kobayashi Y, Zeng T, Neumark DM, Leone SR. Ab initio investigation of Br-3 d core-excited states in HBr and HBr + toward XUV probing of photochemical dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:014101. [PMID: 30868084 PMCID: PMC6404917 DOI: 10.1063/1.5085011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/09/2019] [Indexed: 05/11/2023]
Abstract
Ultrafast X-ray/XUV transient absorption spectroscopy is a powerful tool for real-time probing of chemical dynamics. Interpretation of the transient absorption spectra requires knowledge of core-excited potentials, which necessitates assistance from high-level electronic-structure computations. In this study, we investigate Br-3d core-excited electronic structures of hydrogen bromide (HBr) using spin-orbit general multiconfigurational quasidegenerate perturbation theory (SO-GMC-QDPT). Potential energy curves and transition dipole moments are calculated from the Franck-Condon region to the asymptotic limit and used to construct core-to-valence absorption strengths for five electronic states of HBr (Σ 1 0 + , 3 Π 1 , 1 Π 1 , 3 Π 0 + , 3 Σ 1 ) and two electronic states of HBr+ (2Π3∕2, 2Σ1∕2). The results illustrate the capabilities of Br-3d edge probing to capture transitions of the electronic-state symmetry as well as nonadiabatic dissociation processes that evolve across avoided crossings. Furthermore, core-to-valence absorption spectra are simulated from the neutralΣ 1 0 + state and the ionicΠ 2 1 / 2 , 3 / 2 states by numerically solving the time-dependent Schrödinger equation and exhibit excellent agreement with the experimental spectrum. The comprehensive and quantitative picture of the core-excited states obtained in this work allows for transparent analysis of the core-to-valence absorption signals, filling gaps in the theoretical understanding of the Br-3d transient absorption spectra.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tao Zeng
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | | | | |
Collapse
|
7
|
Mignolet B, Curchod BFE. A walk through the approximations of ab initio multiple spawning. J Chem Phys 2018; 148:134110. [PMID: 29626896 DOI: 10.1063/1.5022877] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Collapse
Affiliation(s)
- Benoit Mignolet
- Theoretical Physical Chemistry, UR MolSYS, B6c, University of Liège, B4000 Liège, Belgium
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Komarova KG, Remacle F, Levine R. On the fly quantum dynamics of electronic and nuclear wave packets. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
van den Wildenberg S, Mignolet B, Levine RD, Remacle F. Pumping and probing vibrational modulated coupled electronic coherence in HCN using short UV fs laser pulses: a 2D quantum nuclear dynamical study. Phys Chem Chem Phys 2017; 19:19837-19846. [PMID: 28726858 DOI: 10.1039/c7cp02048a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coupled electronic-nuclear coherent dynamics induced by a short strong VUV fs pulse in the low excited electronic states of HCN is probed by transient absorption spectroscopy with a second weaker fs UV pulse. The nuclear time-dependent Schrodinger equation is solved on a 2D nuclear grid with several electronic states with a Hamiltonian including the dipole coupling to the pump and the probe electric fields. The two internal nuclear coordinates describe the motion of the light H atom. There is a band of several excited electronic states at about 8 eV above the ground state (GS) that is transiently accessed by the pump pulse. We tailored the pump so as to selectively populate the lowest 1A'' electronic state thereby the pulse creates an electronic coherence with the GS. Our simulations show that this electronic coherence is modulated by the nuclear motion and persists all the way to dissociation on the 1A'' state. Transient absorption spectra computed as a function of the delay time between the pump and the probe pulses provide a detailed probe of the electronic amplitude and its phase, as well as of the modulation of the electronic coherence by the nuclear motion, both bound and dissociative.
Collapse
|
10
|
Pohl V, Hermann G, Tremblay JC. An open-source framework for analyzing N
-electron dynamics. I. Multideterminantal wave functions. J Comput Chem 2017; 38:1515-1527. [DOI: 10.1002/jcc.24792] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3 Berlin 14195 Germany
| | - Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3 Berlin 14195 Germany
| | | |
Collapse
|
11
|
Ding H, Jia D, Manz J, Yang Y. Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI+. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1287967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Ding
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| |
Collapse
|
12
|
Mignolet B, Curchod BFE, Martínez TJ. Communication: XFAIMS-eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. J Chem Phys 2017; 145:191104. [PMID: 27875877 DOI: 10.1063/1.4967761] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attoscience is an emerging field where attosecond pulses or few cycle IR pulses are used to pump and probe the correlated electron-nuclear motion of molecules. We present the trajectory-guided eXternal Field Ab Initio Multiple Spawning (XFAIMS) method that models such experiments "on-the-fly," from laser pulse excitation to fragmentation or nonadiabatic relaxation to the ground electronic state. For the photoexcitation of the LiH molecule, we show that XFAIMS gives results in close agreement with numerically exact quantum dynamics simulations, both for atto- and femtosecond laser pulses. We then show the ability of XFAIMS to model the dynamics in polyatomic molecules by studying the effect of nuclear motion on the photoexcitation of a sulfine (H2CSO).
Collapse
Affiliation(s)
- Benoit Mignolet
- Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Jia D, Manz J, Paulus B, Pohl V, Tremblay JC, Yang Y. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|