1
|
Villaseco Arribas E, Maitra NT, Agostini F. Nonadiabatic dynamics with classical trajectories: The problem of an initial coherent superposition of electronic states. J Chem Phys 2024; 160:054102. [PMID: 38310471 DOI: 10.1063/5.0186984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024] Open
Abstract
Advances in coherent light sources and development of pump-probe techniques in recent decades have opened the way to study electronic motion in its natural time scale. When an ultrashort laser pulse interacts with a molecular target, a coherent superposition of electronic states is created and the triggered electron dynamics is coupled to the nuclear motion. A natural and computationally efficient choice to simulate this correlated dynamics is a trajectory-based method where the quantum-mechanical electronic evolution is coupled to a classical-like nuclear dynamics. These methods must approximate the initial correlated electron-nuclear state by associating an initial electronic wavefunction to each classical trajectory in the ensemble. Different possibilities exist that reproduce the initial populations of the exact molecular wavefunction when represented in a basis. We show that different choices yield different dynamics and explore the effect of this choice in Ehrenfest, surface hopping, and exact-factorization-based coupled-trajectory schemes in a one-dimensional two-electronic-state model system that can be solved numerically exactly. This work aims to clarify the problems that standard trajectory-based techniques might have when a coherent superposition of electronic states is created to initialize the dynamics, to discuss what properties and observables are affected by different choices of electronic initial conditions and to point out the importance of quantum-momentum-induced electronic transitions in coupled-trajectory schemes.
Collapse
Affiliation(s)
- Evaristo Villaseco Arribas
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
2
|
Gelfand N, Komarova K, Remacle F, Levine RD. Nonadiabatic quantum dynamics explores non-monotonic photodissociation branching of N 2 into the N( 4S) + N( 2D) and N( 4S) + N( 2P) product channels. Phys Chem Chem Phys 2024; 26:3274-3284. [PMID: 38197167 DOI: 10.1039/d3cp04854c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Vacuum ultraviolet (VUV) photodissociation of N2 molecules is a source of reactive N atoms in the interstellar medium. In the energy range of VUV optical excitation of N2, the N-N triple bond cleavage leads to three types of atoms: ground-state N(4S) and excited-state N(2P) and N(2D). The latter is the highest reactive and it is believed to be the primary participant in reactions with hydrocarbons in Titan's atmosphere. Experimental studies have observed a non-monotonic energy dependence and non-statistical character of the photodissociation of N2. This implies different dissociation pathways and final atomic products for different wavelength regions in the sunlight spectrum. We here apply ab initio quantum chemical and nonadiabatic quantum dynamical techniques to follow the path of an electronic state from the excitation of a particular singlet 1Σ+u and 1Πu vibronic level of N2 to its dissociation into different atomic products. We simulate dynamics for two isotopomers of the nitrogen molecule, 14N2 and 14N15N for which experimental data on the branching are available. Our computations capture the non-monotonic energy dependence of the photodissociation branching ratios in the energy range 108 000-116 000 cm-1. Tracing the quantum dynamics in a bunch of electronic states enables us to identify the key components that determine the efficacy of singlet to triplet population transfer and therefore predissociation lifetimes and branching ratios for different energy regions.
Collapse
Affiliation(s)
- Natalia Gelfand
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ksenia Komarova
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Francoise Remacle
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liège, B4000 Liège, Belgium
| | - R D Levine
- The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Merritt ICD, Jacquemin D, Vacher M. Attochemistry: Is Controlling Electrons the Future of Photochemistry? J Phys Chem Lett 2021; 12:8404-8415. [PMID: 34436903 DOI: 10.1021/acs.jpclett.1c02016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling matter with light has always been a great challenge, leading to the ever-expanding field of photochemistry. In addition, since the first generation of light pulses of attosecond (1 as = 10-18 s) duration, a great deal of effort has been devoted to observing and controlling electrons on their intrinsic time scale. Because of their short duration, attosecond pulses have a large spectral bandwidth populating several electronically excited states in a coherent manner, i.e., an electronic wavepacket. Because of interference, such a wavepacket has a new electronic distribution implying a potentially different and totally new reactivity as compared to traditional photochemistry, leading to the novel concept of "attochemistry". This nascent field requires the support of theory right from the start. In this Perspective, we discuss the opportunities offered by attochemistry, the related challenges, and the current and future state-of-the-art developments in theoretical chemistry needed to model it accurately.
Collapse
Affiliation(s)
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| |
Collapse
|
4
|
Jia D, Manz J, Yang Y. Timing the recoherences of attosecond electronic charge migration by quantum control of femtosecond nuclear dynamics: A case study for HCCI . J Chem Phys 2019; 151:244306. [PMID: 31893866 DOI: 10.1063/1.5134665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This work suggests an approach to a new target of laser control of charge migration in molecules or molecular ions. The target is motivated by the fact that nuclear motions can not only cause decoherence of charge migration, typically within few femtoseconds, but they may also enable the reappearance of charge migration after much longer times, typically several tens or even hundreds of femtoseconds. This phenomenon is called recoherence of charge migration, opposite to its decoherence. The details depend on the initiation of the original charge migration by an ultrashort strong intense pump laser pulse. It may reappear quasiperiodically, with reference period Tr. We show that a well-designed pump-dump laser pulse can enforce recoherences of charge migration at different target times Tc, for example, at Tc ≈ Tr/2. The approach is demonstrated by quantum dynamics simulations of the laser driven electronic and nuclear motions in the oriented linear cation HCCI+. First, the concept is explained in terms of a didactic one-dimensional (1D) model that accounts for the decisive CI stretch. The 1D results are then confirmed by a three-dimensional model for the complete set of the CH, CC, and CI stretches.
Collapse
Affiliation(s)
- Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
5
|
van den Wildenberg S, Mignolet B, Levine RD, Remacle F. Temporal and spatially resolved imaging of the correlated nuclear-electronic dynamics and of the ionized photoelectron in a coherently electronically highly excited vibrating LiH molecule. J Chem Phys 2019; 151:134310. [DOI: 10.1063/1.5116250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephan van den Wildenberg
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
| | - Benoit Mignolet
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
| | - R. D. Levine
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - F. Remacle
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Time-dependent view of an isotope effect in electron-nuclear nonequilibrium dynamics with applications to N 2. Proc Natl Acad Sci U S A 2018; 115:5890-5895. [PMID: 29784776 DOI: 10.1073/pnas.1804455115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Isotopic fractionation in the photodissociation of N2 could explain the considerable variation in the 14N/15N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N2 is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.
Collapse
|
7
|
Abstract
Invited by the editorial committee of the Annual Review of Physical Chemistry to "contribute my autobiography," I present it here, as I understand the term. It is about my parents, my mentors, my coworkers, and my friends in learning and the scientific problems that we tried to address. Courtesy of the editorial assistance of Annual Reviews, some of the science is in the figure captions and sidebars. I am by no means done: I am currently trying to fuse the quantitative rigor of physical chemistry with systems biology while also dealing with a post-Born-Oppenheimer regime in electronic dynamics and am attempting to instruct molecules to perform advanced logic.
Collapse
Affiliation(s)
- Raphael D Levine
- The Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; .,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
8
|
van den Wildenberg S, Mignolet B, Levine RD, Remacle F. Pumping and probing vibrational modulated coupled electronic coherence in HCN using short UV fs laser pulses: a 2D quantum nuclear dynamical study. Phys Chem Chem Phys 2017; 19:19837-19846. [PMID: 28726858 DOI: 10.1039/c7cp02048a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coupled electronic-nuclear coherent dynamics induced by a short strong VUV fs pulse in the low excited electronic states of HCN is probed by transient absorption spectroscopy with a second weaker fs UV pulse. The nuclear time-dependent Schrodinger equation is solved on a 2D nuclear grid with several electronic states with a Hamiltonian including the dipole coupling to the pump and the probe electric fields. The two internal nuclear coordinates describe the motion of the light H atom. There is a band of several excited electronic states at about 8 eV above the ground state (GS) that is transiently accessed by the pump pulse. We tailored the pump so as to selectively populate the lowest 1A'' electronic state thereby the pulse creates an electronic coherence with the GS. Our simulations show that this electronic coherence is modulated by the nuclear motion and persists all the way to dissociation on the 1A'' state. Transient absorption spectra computed as a function of the delay time between the pump and the probe pulses provide a detailed probe of the electronic amplitude and its phase, as well as of the modulation of the electronic coherence by the nuclear motion, both bound and dissociative.
Collapse
|
9
|
Mignolet B, Curchod BFE, Martínez TJ. Communication: XFAIMS-eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. J Chem Phys 2017; 145:191104. [PMID: 27875877 DOI: 10.1063/1.4967761] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attoscience is an emerging field where attosecond pulses or few cycle IR pulses are used to pump and probe the correlated electron-nuclear motion of molecules. We present the trajectory-guided eXternal Field Ab Initio Multiple Spawning (XFAIMS) method that models such experiments "on-the-fly," from laser pulse excitation to fragmentation or nonadiabatic relaxation to the ground electronic state. For the photoexcitation of the LiH molecule, we show that XFAIMS gives results in close agreement with numerically exact quantum dynamics simulations, both for atto- and femtosecond laser pulses. We then show the ability of XFAIMS to model the dynamics in polyatomic molecules by studying the effect of nuclear motion on the photoexcitation of a sulfine (H2CSO).
Collapse
Affiliation(s)
- Benoit Mignolet
- Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Vacher M, Albertani FEA, Jenkins AJ, Polyak I, Bearpark MJ, Robb MA. Electron and nuclear dynamics following ionisation of modified bismethylene-adamantane. Faraday Discuss 2016; 194:95-115. [DOI: 10.1039/c6fd00067c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have simulated the coupled electron and nuclear dynamics using the Ehrenfest method upon valence ionisation of modified bismethylene-adamantane (BMA) molecules where there is an electron transfer between the two π bonds. We have shown that the nuclear motion significantly affects the electron dynamics after a few fs when the electronic states involved are close in energy. We have also demonstrated how the non-stationary electronic wave packet determines the nuclear motion, more precisely the asymmetric stretching of the two π bonds, illustrating “charge-directed reactivity”. Taking into account the nuclear wave packet width results in the dephasing of electron dynamics with a half-life of 8 fs; this eventually leads to the equal delocalisation of the hole density over the two methylene groups and thus symmetric bond lengths.
Collapse
Affiliation(s)
| | | | | | - Iakov Polyak
- Department of Chemistry
- Imperial College London
- UK
| | | | | |
Collapse
|