1
|
Yu F. Origin of the Microsolvation Effect on the Central Barriers of S N2 Reactions. J Phys Chem A 2022; 126:4342-4348. [PMID: 35785958 DOI: 10.1021/acs.jpca.2c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have quantitatively analyzed the microsolvation effect on the central barriers of microsolvated bimolecular nucleophilic substitution (SN2) reactions by means of a two-step energy decomposition procedure. According to the first energy decompositions, an obvious increase in the central barrier for a microsolvated SN2 reaction against its unsolvated counterpart can be mainly ascribed to the fact that the interaction between the solute and the conjunct solvent becomes less attractive from the reactant complex to the transition state. On the basis of the second energy decompositions with symmetry-adapted perturbation theory, this less attractive interaction in the transition state is primarily due to the interplay of the changes in the electrostatic, exchange, and induction components. However, the contribution of the change for the dispersion component is relatively small. A distinct linear correlation has also been observed between the changes of the total interaction energies and those of the corresponding electrostatic components for the microsolvated SN2 reactions studied in this work. Moreover, the two-step energy decomposition procedure employed in this work is expected to be extensively applied to the gas phase reactions mediated by molecules or clusters.
Collapse
Affiliation(s)
- Feng Yu
- Department of Physics, School of Freshmen, Xi'an Technological University, No. 4 Jinhua North Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Ji X, Xie J. Proton transfer-induced competing product channels of microsolvated Y -(H 2O) n + CH 3I (Y = F, Cl, Br, I) reactions. Phys Chem Chem Phys 2022; 24:7539-7550. [PMID: 35289813 DOI: 10.1039/d1cp04873b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential energy profiles of three proton transfer-involved product channels for the reactions of Y-(H2O)1,2 + CH3I (Y = F, Cl, Br, I) were characterized using the B97-1/ECP/d method. These three channels include the (1) PTCH3 product channel that transfers a proton from methyl to nucleophile, (2) HO--induced nucleophilic substitution (HO--SN2) product channel, and (3) oxide ion substitution (OIS) product channel that gives CH3O- and HY products. The reaction enthalpies and barrier heights follow the order OIS > PTCH3 > HO--SN2 > Y--SN2, and thus HO--SN2 can compete with the most favored Y--SN2 product channel under singly-/doubly-hydrated conditions, while the PTCH3 channel only occurs under high collision energy and the OIS channel is the least probable. All product channels share the same pre-reaction complex, Y-(H2O)n-CH3I, in the entrance of the potential energy profile, signifying the importance of the pre-reaction complex. For HO-/Y--SN2 channels, we considered front-side attack, back-side attack, and halogen-bonded complex mechanisms. Incremental hydration increases the barriers of both HO-/Y--SN2 channels as well as their barrier difference, implying that the HO--SN2 channel becomes less important when further hydrated. Varying the nucleophile Y- from F- to I- also increases the barrier heights and barrier difference, which correlates with the proton affinity of the nucleophiles. Energy decomposition analyses show that both the orbital interaction energy and structural deformation energy of the transition states determine the SN2 barrier change trend with incremental hydration and varying Y-. In brief, this work computes the comprehensive potential energy surfaces of the HO--SN2 and PTCH3 channels and shows how proton transfer affects the microsolvated Y-(H2O)1,2 + CH3I reaction by competing with the traditional Y--SN2 channel.
Collapse
Affiliation(s)
- Xiaoyan Ji
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Mallick S, Kumar P. Effect of microsolvation on the mode specificity of the OH˙(H 2O) + HCl reaction. Phys Chem Chem Phys 2021; 23:25246-25255. [PMID: 34734608 DOI: 10.1039/d1cp01300a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigates the mode specificity in the microsolvated OH˙(H2O) + HCl reaction using on-the-fly direct dynamics simulation. To the best of our knowledge, this is the first study which aims to gain insights into the effect of microsolvation on the mode selectivity. Our investigation reveals that, similar to the gas phase OH˙ + HCl reaction, the microsolvated reaction is also predominantly affected by the vibrational excitation of the HCl mode, whereas the OH vibrational mode behaves as a spectator. Interestingly, in contrast to the behavior of the bare reaction, the integral cross section at the ground state of the microsolvated reaction decreases with an increase in translational energy. However, for the vibrational excited states, the reactivity of the microsolvated reaction is found to be higher than that of the bare reaction within the selected range of translational energies.
Collapse
Affiliation(s)
- Subhasish Mallick
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
4
|
Bastian B, Michaelsen T, Li L, Ončák M, Meyer J, Zhang DH, Wester R. Imaging Reaction Dynamics of F -(H 2O) and Cl -(H 2O) with CH 3I. J Phys Chem A 2020; 124:1929-1939. [PMID: 32050071 PMCID: PMC7197043 DOI: 10.1021/acs.jpca.0c00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
dynamics of microhydrated nucleophilic substitution reactions
have been studied using crossed beam velocity map imaging experiments
and quasiclassical trajectory simulations at different collision energies
between 0.3 and 2.6 eV. For F–(H2O) reacting
with CH3I, a small fraction of hydrated product ions I–(H2O) is observed at low collision energies.
This product, as well as the dominant I–, is formed
predominantly through indirect reaction mechanisms. In contrast, a
much smaller indirect fraction is determined for the unsolvated reaction.
At the largest studied collision energies, the solvated reaction is
found to also occur via a direct rebound mechanism. The measured product
angular distributions exhibit an overall good agreement with the simulated
angular distributions. Besides nucleophilic substitution, also ligand
exchange reactions forming F–(CH3I) and,
at high collision energies, proton transfer reactions are detected.
The differential scattering images reveal that the Cl–(H2O) + CH3I reaction also proceeds predominantly
via indirect reaction mechanisms.
Collapse
Affiliation(s)
- Björn Bastian
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Tim Michaelsen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Lulu Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Thomas DA, Mucha E, Lettow M, Meijer G, Rossi M, von Helden G. Characterization of a trans-trans Carbonic Acid-Fluoride Complex by Infrared Action Spectroscopy in Helium Nanodroplets. J Am Chem Soc 2019; 141:5815-5823. [PMID: 30883095 PMCID: PMC6727381 DOI: 10.1021/jacs.8b13542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The high Lewis basicity
and small ionic radius of fluoride promote
the formation of strong ionic hydrogen bonds in the complexation of
fluoride with protic molecules. Herein, we report that carbonic acid,
a thermodynamically disfavored species that is challenging to investigate
experimentally, forms a complex with fluoride in the gas phase. Intriguingly,
this complex is highly stable and is observed in abundance upon nanoelectrospray
ionization of an aqueous sodium fluoride solution in the presence
of gas-phase carbon dioxide. We characterize the structure and properties
of the carbonic acid–fluoride complex, F–(H2CO3), and its deuterated isotopologue, F–(D2CO3), by helium nanodroplet
infrared action spectroscopy in the photon energy range of 390–2800
cm–1. The complex adopts a C2v symmetry structure with the carbonic acid
in a planar trans–trans conformation and both OH groups forming
ionic hydrogen bonds with the fluoride. Substantial vibrational anharmonic
effects are observed in the infrared spectra, most notably a strong
blue shift of the symmetric hydrogen stretching fundamental relative
to predictions from the harmonic approximation or vibrational second-order
perturbation theory. Ab initio thermostated ring-polymer molecular
dynamics simulations indicate that this blue shift originates from
strong coupling between the hydrogen stretching and bending vibrations,
resulting in an effective weakening of the OH···F– ionic hydrogen bonds.
Collapse
Affiliation(s)
- Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Eike Mucha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Maike Lettow
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Mariana Rossi
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| |
Collapse
|
6
|
Gu M, Liu X, Yang L, Sun S, Zhang J. Dynamics of Cl -(H 2O) + CH 3I Substitution Reaction: The Influences of Solvent and Nucleophile. J Phys Chem A 2019; 123:2203-2210. [PMID: 30794408 DOI: 10.1021/acs.jpca.9b00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of microsolvation provides a deeper understanding of solvent effects on reaction dynamics. Here, the properties of the SN2 reaction of hydrated chloride with methyl iodide are investigated by direct dynamics simulations, and how the solute-solvent interactions and the basicity of nucleophiles can profoundly affect the atomic level dynamics is discussed in detail. The results show that the direct-rebound mechanism dominates the substitution reaction, and the roundabout mechanism, which prevails in the indirect unsolvated counterpart reaction, still accounts for a high proportion of the indirect mechanisms. The involvement of a solvent water molecule does not significantly reduce the cross section and rate constant compared to the unhydrated reaction at high collision energy. By varying solvated Cl- to F-, the dominant mechanisms are totally different and in contrast, the dynamics of water does not show much difference, and the departure of H2O tends to occur prior to the substitution reaction because of the facile breakage of the hydrogen bond at high collision energy.
Collapse
|
7
|
Effect of solvent polarity on the potential energy surface in the SN2 reaction of F− + CH3Cl. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Olasz B, Czakó G. High-Level-Optimized Stationary Points for the F -(H 2O) + CH 3I System: Proposing a New Water-Induced Double-Inversion Pathway. J Phys Chem A 2019; 123:454-462. [PMID: 30571112 DOI: 10.1021/acs.jpca.8b10630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report 29 stationary points for the F-(H2O) + CH3I reaction obtained by using the high-level explicitly correlated CCSD(T)-F12b method with the aug-cc-pVDZ basis set for the determination of the benchmark structures and frequencies and the aug-cc-pVQZ basis for energy computations. The stationary points characterize the monohydrated F-- and OH--induced Walden-inversion pathways and, for the first time, the front-side attack and F--induced double-inversion mechanisms leading to CH3F with retention as well as the novel H2O-induced double-inversion retention pathway producing CH3OH. Hydration effectively increases the relative energies of the stationary points, but the monohydrated inversion pathways are still barrierless, whereas the front-side attack and double-inversion barrier heights are around 30 and 20 kcal/mol, respectively.
Collapse
Affiliation(s)
- Balázs Olasz
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry , University of Szeged , Rerrich Béla tér 1 , Szeged H-6720 , Hungary
| | - Gábor Czakó
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry , University of Szeged , Rerrich Béla tér 1 , Szeged H-6720 , Hungary
| |
Collapse
|
9
|
Liu X, Yang L, Zhang J, Sun J. Competition of F/OH-Induced S N2 and Proton-Transfer Reactions with Increased Solvation. J Phys Chem A 2018; 122:9446-9453. [PMID: 30444620 DOI: 10.1021/acs.jpca.8b08572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The potential energy profiles of F/OH-induced nucleophilic substitution (SN2) and proton-transfer (PT) channels evolving with solvation for reactions of F-(H2O) n=1-2 + CH3I were characterized using B3LYP/ECP/d method. The hydrogen-bonded F-(H2O) n---HCH2I prereaction complex at the entrance of potential energy surface (PES) has a significant role on the reaction dynamics for each channel. Among the above three channels, the F-SN2 channel is the most preferred and OH-SN2 could be competitive. In contrast, the PT channel will occur at much higher collision energy. Importantly, for each channel, the central barrier is gradually increased with the addition of water molecules. This phenomenon indicates that the reactivity will decrease with degrees of solvation and this has been confirmed by experiment and direct dynamics simulations. Moreover, compared with the previous trajectory simulations, a non-IRC behavior has been uncovered. The water delivering process from fluorine to iodine side as illustrated on PES is barely observed, and instead, the reaction tends to dehydrate before passing through the SN2 barrier and proceeds with the less hydrated pathway in order to weaken the steric effect. The work presented here shows the comprehensive potential energy surfaces and structures information on the F-SN2, PT, and OH-SN2 channels, and predict their competitive relationship, which would be helpful for better understanding the dynamics behavior of the title and analogous reactions.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Li Yang
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Jiaxu Zhang
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Jianmin Sun
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| |
Collapse
|
10
|
Liu X, Xie J, Zhang J, Yang L, Hase WL. Steric Effects of Solvent Molecules on S N2 Substitution Dynamics. J Phys Chem Lett 2017; 8:1885-1892. [PMID: 28394615 DOI: 10.1021/acs.jpclett.7b00577] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Influences of solvent molecules on SN2 reaction dynamics of microsolvated F-(H2O)n with CH3I, for n = 0-3, are uncovered by direct chemical dynamics simulations. The direct substitution mechanism, which is important without microsolvation, is quenched dramatically upon increasing hydration. The water molecules tend to force reactive encounters to proceed through the prereaction collision complex leading to indirect reaction. In contrast to F-(H2O), reaction with higher hydrated ions shows a strong propensity for ion desolvation in the entrance channel, diminishing steric hindrance for nucleophilic attack. Thus, nucleophilic substitution avoids the potential energy barrier with all of the solvent molecules intact and instead occurs through the less solvated barrier, which is energetically unexpected because the former barrier has a lower energy. The work presented here reveals a trade-off between reaction energetics and steric effects, with the latter found to be crucial in understanding how hydration influences microsolvated SN2 dynamics.
Collapse
Affiliation(s)
- Xu Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Jing Xie
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jiaxu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
11
|
Yang L, Liu X, Zhang J, Xie J. Effects of microsolvation on a S N2 reaction: indirect atomistic dynamics and weakened suppression of reactivity. Phys Chem Chem Phys 2017; 19:9992-9999. [PMID: 28362011 DOI: 10.1039/c7cp00294g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic studies of microsolvation in the gas phase have enriched our knowledge of solvent effects. Here, the dynamics of a prototype SN2 reaction of a hydrated fluoride ion with methyl iodide is uncovered employing direct dynamics simulations that show strikingly distinct features from those determined for an unsolvated system. An indirect scattering is found to prevail, which occurs dominantly by forming hydrated F-(H2O)-HCH2I and F-(H2O)-CH3I pre-reaction complexes at low energies, but proceeds through their water-free counterparts at higher energies. This finding is in strong contrast to a general evolution from indirect to direct dynamics with enhancing energy for the unsolvated substitution reactions, and this discrepancy is understood by the substantial steric hindrance introduced by a water molecule. As established in experiments, solvation suppresses the reactivity, whereas we find that this depression is remarkably frustrated upon raising the energy given that collision-induced dehydration essentially diminishes the water block for reactive collisions. The present study sheds light on how solute-solvent interactions affect the underlying dynamics at a deeper atomic level, thereby promoting our understanding of the fundamental solvent effects on chemical reactions in solution.
Collapse
Affiliation(s)
- Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | | | | | | |
Collapse
|
12
|
Yang L, Zhang J, Xie J, Ma X, Zhang L, Zhao C, Hase WL. Competing E2 and SN2 Mechanisms for the F– + CH3CH2I Reaction. J Phys Chem A 2017; 121:1078-1085. [DOI: 10.1021/acs.jpca.6b09546] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li Yang
- School
of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Jiaxu Zhang
- School
of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Jing Xie
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xinyou Ma
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Linyao Zhang
- School
of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Chenyang Zhao
- School
of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - William L. Hase
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
13
|
Carrascosa E, Meyer J, Wester R. Imaging the dynamics of ion–molecule reactions. Chem Soc Rev 2017; 46:7498-7516. [DOI: 10.1039/c7cs00623c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of ion–molecule reactions have been studied in the last years using the crossed-beam ion imaging technique, from charge transfer and proton transfer to nucleophilic substitution and elimination.
Collapse
Affiliation(s)
- Eduardo Carrascosa
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
14
|
de Paul N. Nziko V, Scheiner S. Effects of Angular Deformation on the Energetics of the S N2 Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Steve Scheiner
- Department of Chemistry and Biochemistry; Utah State University; 84322-0300 Logan UT USA
| |
Collapse
|