1
|
Mardyukov A, Hernández FJ, Song L, Crespo-Otero R, Schreiner PR. Experimentally Delineating the Catalytic Effect of a Single Water Molecule in the Photochemical Rearrangement of the Phenylperoxy Radical to the Oxepin-2(5 H)-one-5-yl Radical. J Am Chem Soc 2024; 146:19070-19076. [PMID: 38968610 DOI: 10.1021/jacs.4c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Catalysis plays a pivotal role in both chemistry and biology, primarily attributed to its ability to stabilize transition states and lower activation free energies, thereby accelerating reaction rates. While computational studies have contributed valuable mechanistic insights, there remains a scarcity of experimental investigations into transition states. In this work, we embark on an experimental exploration of the catalytic energy lowering associated with transition states in the photorearrangement of the phenylperoxy radical-water complex to the oxepin-2(5H)-one-5-yl radical. Employing matrix isolation spectroscopy, density functional theory, and post-HF computations, we scrutinize the (photo)catalytic impact of a single water molecule on the rearrangement. Our computations indicate that the barrier heights for the water-assisted unimolecular isomerization steps are approximately 2-3 kcal mol-1 lower compared to the uncatalyzed steps. This decrease directly coincides with the energy difference in the required wavelength during the transformation (Δλ = λ546 nm - λ579 nm ≡ 52.4-49.4 = 3.0 kcal mol-1), allowing us to elucidate the differential transition state energy in the photochemical rearrangement of the phenylperoxy radical catalyzed by a single water molecule. Our work highlights the important role of water catalysis and has, among others, implications for understanding the mechanism of organic reactions under atmospheric conditions.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | | | - Lijuan Song
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Rachel Crespo-Otero
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
2
|
Paul M, Thomulka T, Harnying W, Neudörfl JM, Adams CR, Martens J, Berden G, Oomens J, Meijer AJHM, Berkessel A, Schäfer M. Hydrogen Bonding Shuts Down Tunneling in Hydroxycarbenes: A Gas-Phase Study by Tandem-Mass Spectrometry, Infrared Ion Spectroscopy, and Theory. J Am Chem Soc 2023. [PMID: 37235775 DOI: 10.1021/jacs.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.
Collapse
Affiliation(s)
- Mathias Paul
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Thomas Thomulka
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Wacharee Harnying
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Charlie R Adams
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | | | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Mathias Schäfer
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| |
Collapse
|
3
|
Zhang Z, Huang A, Ma L, Xu JH, Zhang M. A facile metal-free one-flask synthesis of multi-substituted furans via a BF 3·Et 2O mediated formal [4 + 1] reaction of 3-chloro-3-phenyldiazirines and α,β-alkenyl ketones. RSC Adv 2022; 12:15190-15195. [PMID: 35702439 PMCID: PMC9115646 DOI: 10.1039/d2ra01472f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
A facile, efficient and metal free one-flask approach to diversely substituted furans from easily accessible 3-chloro-3-phenyldiazirines and α,β-alkenyl ketones is reported. This protocol integrates three steps of cyclopropanation, Cloke–Wilson rearrangement and elimination of HCl in one-flask to give products in moderate to good yields. It provides a metal and oxidant free approach to multi-substituted furans with the advantages of easy operation, mild reaction conditions and a broad scope of substrates. A metal and oxidant free approach to multi-substituted furans from easily accessible 3-chloro-3-phenyldiazirines and α,β-alkenyl ketones in one flask.![]()
Collapse
Affiliation(s)
- Zixin Zhang
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Jian-Hua Xu
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210093 China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| |
Collapse
|
4
|
Plenert AC, Mendez-Vega E, Sander W. Micro- vs Macrosolvation in Reichardt's Dyes. J Am Chem Soc 2021; 143:13156-13166. [PMID: 34387472 DOI: 10.1021/jacs.1c04680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solvation is a complex phenomenon involving electrostatic and van der Waals forces as well as chemically more specific effects such as hydrogen bonding. To disentangle global solvent effects (macrosolvation) from local solvent effects (microsolvation), we studied the UV-vis and IR spectra of a solvatochromic pyridinium-N-phenolate dye (a derivative of Reichardt's dye) in rare gas matrices, in mixtures of argon and water, and in water ice. The π-π* transition of the betaine dye in the visible region and its C-O stretching vibration in the IR region are highly sensitive to solvent effects. By annealing argon matrices of the betaine dye doped with low concentrations of water, we were able to synthesize 1:1 water-dye complexes. Formation of hydrogen-bonded complexes leads to small shifts of the π-π* transition only, as long as the global polarity of the matrix environment does not change. In contrast, changes of the global polarity result in large spectral band shifts. Hydrogen-bonded complexes of the betaine dye are more sensitive to global polarity changes than the dye itself, explaining why ET values determined with Reichardt's dyes are very different for protic and nonprotic solvents, even if the relative permittivities of these solvents are similar.
Collapse
Affiliation(s)
- Adam C Plenert
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
5
|
Gillespie BR, Patel CA, Rothrock MM, Heard GL, Setser DW, Holmes BE. Experimental and Computational Studies of Unimolecular 1,1-HX (X = F, Cl) Elimination Reactions of C 2D 5CHFCl: Role of Carbene:HF and HCl Adducts in the Exit Channel of RCHFCl and RCHCl 2 Reactions. J Phys Chem A 2019; 123:2621-2633. [PMID: 30841697 DOI: 10.1021/acs.jpca.9b00779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas-phase unimolecular reactions of C2D5CHFCl molecules with 94 kcal mol-1 of vibrational energy have been studied by the chemical-activation experimental technique and by electronic-structure computations. Products from the reaction of C2D5CHFCl molecules, formed by the recombination of C2D5 and CHFCl radicals in a room temperature bath gas, were measured by gas chromatography-mass spectrometry. The 2,1-DCl (81%) and 1,1-HCl (17%) elimination reactions are the principal processes, but 2,1-DF and 1,1-HF elimination reactions also are observed. Comparison of experimental rate constants to calculated statistical rate constants provides threshold energies. The potential surfaces associated with C2D5(F)C: + HCl and C2D5(Cl)C: + HF reactions are of special interest because hydrogen-bonded adducts with HCl and HF with dissociation energies of 6.4 and 9.3 kcal mol-1, respectively, are predicted by calculations. The relationship between the geometries and threshold energies of transition states for 1,1-HCl elimination and carbene:HCl adducts is complex, and previous studies of related molecules, such as CD3CHFCl, CD2ClCHFCl, C2D5CHCl2, and halogenated methanes are included in the computational analysis. Extensive calculations for CH3CHFCl as a model for 1,1-HCl reactions illustrate properties of the exit-channel potential energy surface. Since the 1,1-HCl transition state is submerged relative to dissociation of the adduct, inner and outer transition states should be considered for analysis of rate constants describing 1,1-HCl elimination and addition reactions of carbenes to HCl.
Collapse
Affiliation(s)
- Blanton R Gillespie
- Department of Chemistry , University of North Carolina-Asheville , 1 University Heights , Asheville , North Carolina 28804-8511 , United States
| | - Chaitanya A Patel
- Department of Chemistry , University of North Carolina-Asheville , 1 University Heights , Asheville , North Carolina 28804-8511 , United States
| | - Mallory M Rothrock
- Department of Chemistry , University of North Carolina-Asheville , 1 University Heights , Asheville , North Carolina 28804-8511 , United States
| | - George L Heard
- Department of Chemistry , University of North Carolina-Asheville , 1 University Heights , Asheville , North Carolina 28804-8511 , United States
| | - D W Setser
- Kansas State University , Manhattan , Kansas 66506 , United States
| | - Bert E Holmes
- Department of Chemistry , University of North Carolina-Asheville , 1 University Heights , Asheville , North Carolina 28804-8511 , United States
| |
Collapse
|
6
|
Altun A, Saitow M, Neese F, Bistoni G. Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework. J Chem Theory Comput 2019; 15:1616-1632. [PMID: 30702888 PMCID: PMC6728066 DOI: 10.1021/acs.jctc.8b01145] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Local
energy decomposition (LED) analysis decomposes the interaction
energy between two fragments calculated at the domain-based local
pair natural orbital CCSD(T) (DLPNO-CCSD(T)) level of theory into
a series of chemically meaningful contributions and has found widespread
applications in the study of noncovalent interactions. Herein, an
extension of this scheme that allows for the analysis of interaction
energies of open-shell molecular systems calculated at the UHF-DLPNO-CCSD(T)
level is presented. The new scheme is illustrated through applications
to the CH2···X (X = He, Ne, Ar, Kr, and
water) and heme···CO interactions in the low-lying
singlet and triplet spin states. The results are used to discuss the
mechanism that governs the change in the singlet–triplet energy
gap of methylene and heme upon adduct formation.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Masaaki Saitow
- Department of Chemistry, Graduate School of Science , Nagoya University , 1-5 Chikusa-ku , 464-8602 Nagoya , Japan
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
7
|
Raut AH, Costa P, Sander W. Reactions of Arylcarbenes with Lewis Acids. Chemistry 2018; 24:18043-18051. [PMID: 30230615 DOI: 10.1002/chem.201803695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 11/10/2022]
Abstract
The reactions of the three triplet ground state arylcarbenes diphenylcarbene 1, fluorenylidene 2, and dibenzocycloheptadienylidene 3 with the Lewis acids H2 O, ICF3 , and BF3 were studied under the conditions of matrix isolation. H2 O was selected as typical hydrogen bond donor, ICF3 as halogen bond donor, and BF3 as strong Lewis acid. H2 O forms hydrogen-bonded complexes of the singlet carbenes with 1 and 2, but not with 3. This is rationalized by the larger singlet-triplet gap of 3, which does not allow to stabilize the singlet state below the triplet state by hydrogen bonding. With ICF3 , both 1 and 3 form halogen-bonded complexes of the singlet states of the carbenes. This indicates that halogen bonding stabilizes singlet carbenes more than hydrogen bonding. Carbene 2 reacts differently from 1 and 3 by forming an iodonium ylide, thus avoiding antiaromatic destabilization of the fluorenyl unit. With BF3 , all three carbenes form zwitterionic Lewis acid/base complexes.
Collapse
Affiliation(s)
- Akshay Hemant Raut
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| |
Collapse
|
8
|
Brown TM, Gillespie BR, Smith CA, Nestler MJ, Heard GL, Setser DW, Holmes BE. Analysis of the Five Unimolecular Reaction Pathways of CD 2ClCHFCl with Emphasis on CD 2Cl(F)C: and CD 2Cl(Cl)C: Formed by 1,1-HCl and 1,1-HF Elimination. J Phys Chem A 2018; 122:8446-8457. [PMID: 30261723 DOI: 10.1021/acs.jpca.8b06680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The five unimolecular HX and DX (X = F, Cl) elimination pathways of CD2ClCHFCl* were examined using a chemical activation technique; the molecules were generated with 92 kcal mol-1 of vibrational energy in a room-temperature bath gas by a combination of CD2Cl and CHFCl radicals. The total unimolecular rate constant was 9.7 × 107 s-1, and branching fractions for each channel were 0.52 (2,1-DCl), 0.29 (1,1-HCl), 0.10 (2,1-DF), 0.07 (1,1-HF), and 0.02 (1,2-HCl). Comparison of the individual experimental rate constants to calculated statistical rate constants gave threshold energies for each process as 63, 72, 66, 73, and 70 kcal mol-1, listed in the same order as the branching fractions. The 1,1-HCl and 1,1-HF reactions gave carbenes, CD2Cl(F)C: and CD2Cl(Cl)C:, respectively, as products, which have hydrogen-bonded complexes with HCl or HF in the exit channel of the potential energy surface. These carbenes have energy in excess of the threshold energy for D atom migration to give CDCl═CDF and CDCl═CDCl, and the subsequent cis-trans isomerization rates of the dihaloethenes can provide information about energy disposal by the 1,1-HX elimination reactions. Electronic structure calculations provide information for transition states of CD2ClCHFCl and hydrogen-bonded complexes of carbenes with HF and HCl. In addition, D atom migration in both free carbenes and in complexes formed by the carbene hydrogen bonding to HCl or HF is explored.
Collapse
Affiliation(s)
- Timothy M Brown
- Department of Chemistry , University of North Carolina-Asheville , One University Heights , Asheville , North Carolina 28804 , United States
| | - Blanton R Gillespie
- Department of Chemistry , University of North Carolina-Asheville , One University Heights , Asheville , North Carolina 28804 , United States
| | - Caleb A Smith
- Department of Chemistry , University of North Carolina-Asheville , One University Heights , Asheville , North Carolina 28804 , United States
| | - Matthew J Nestler
- Department of Chemistry , University of North Carolina-Asheville , One University Heights , Asheville , North Carolina 28804 , United States
| | - George L Heard
- Department of Chemistry , University of North Carolina-Asheville , One University Heights , Asheville , North Carolina 28804 , United States
| | - D W Setser
- Kansas State University , Manhattan , Kansas 66506 , United States
| | - Bert E Holmes
- Department of Chemistry , University of North Carolina-Asheville , One University Heights , Asheville , North Carolina 28804 , United States
| |
Collapse
|
9
|
Ghafarian Shirazi R, Neese F, Pantazis DA. Accurate Spin-State Energetics for Aryl Carbenes. J Chem Theory Comput 2018; 14:4733-4746. [DOI: 10.1021/acs.jctc.8b00587] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reza Ghafarian Shirazi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Despotović I. Basicity of Some Pyridinophanes in Gas Phase and Acetonitrile – a DFT Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201801449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ines Despotović
- Division of Physical ChemistryRuđer Bošković Institute, Bijenička 54 HR-10002 Zagreb Croatia
| |
Collapse
|
11
|
Elucidation of roles for vitamin B 12 in regulation of folate, ubiquinone, and methionine metabolism. Proc Natl Acad Sci U S A 2017; 114:E1205-E1214. [PMID: 28137868 DOI: 10.1073/pnas.1612360114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12 Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.
Collapse
|
12
|
Standard JM. Effects of Solvation and Hydrogen Bond Formation on Singlet and Triplet Alkyl or Aryl Carbenes. J Phys Chem A 2016; 121:381-393. [DOI: 10.1021/acs.jpca.6b11202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean M. Standard
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|