Medel R. Simple models for the quick estimation of ground state hydrogen tunneling splittings in alcohols and other compounds.
Phys Chem Chem Phys 2021;
23:17591-17605. [PMID:
34369526 DOI:
10.1039/d1cp02115j]
[Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Models for the quick estimation of energy splittings caused by coherent tunneling of hydrogen atoms are evaluated with available experimental data for alcohols and improvements are proposed. The discussed models are mathematically simple and require only results from routine quantum chemical computations, i.e. hybrid DFT calculation of the equilibrium geometry and the transition state within the harmonic approximation. A benchmark of experimental splittings spanning four orders of magnitude for 27 alcohol species is captured by three evaluated models with a mean symmetric deviation factor of 1.7, 1.5 and 1.4, respectively, i.e. the calculated values deviate on average by this factor in either direction. Limitations of the models are explored with alcohols featuring uncommon properties, such as an inverted conformational energy sequence, a very light molecular frame, an elevated torsional frequency, or a coupling with a second internal degree of freedom. If the splitting of either the protiated or deuterated form of an alcohol is already experimentally determined, the one of the second isotopolog can be estimated by three additional models with a mean symmetric deviation factor of 1.14, 1.19 and 1.15, respectively. It is shown that this can be achieved with a novel approach without any quantum chemical calculation by directly correlating experimental splittings of isotopologs across related species. This is also demonstrated for other classes of compounds with hydrogen tunneling, such as amines, thiols, and phenols. Furthermore, it is found that the isotope effect can even be anticipated without any further knowledge about the system solely from the size of either splitting with a mean symmetric deviation factor of 1.3. This is based on an extensive sample of 77 pairs of splittings spanning eight orders of magnitude for isotopologs of chemically diverse compounds.
Collapse