1
|
Geng Z, Jin Q, Liu L, Huang Y, Zhou X, Zhang X, Sun W. Enhanced MALDI-2 Sensitivity with Reflecting Post-Ionization Laser for High-Resolution MS Imaging Combined with Real-Time Microscope Imaging. Anal Chem 2024. [PMID: 39093983 DOI: 10.1021/acs.analchem.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Laser-induced matrix-assisted laser desorption/ionization post-ionization (MALDI-2) could improve the MALDI sensitivity of biological metabolites by over 1 order of magnitude. Herein, we demonstrate that MALDI-2 sensitivity can be further enhanced with reflecting post-ionization laser that multiplies the intersection times between laser and MALDI plume. This method, which we named MALDI-2+, typically brought over 2 times sensitivity improvement from conventional MALDI-2. Advancing in sensitivity thereby prompted us to pursue higher mass spectrometry imaging (MSI) spatial resolution. A dedicated T-shaped ion guide was designed to allow perpendicular incidence of ablation laser in reflection geometry MALDI. Although 8-10 μm pixel was used in MALDI imaging due to the limited precision of the motorized stage, the laser spot diameter could be down to 2.5 μm for potentially higher spatial resolution. In addition, this ion source enabled real-time and high-quality microscope imaging from backward of the sample plate. Beneficially, we were able to monitor the actual laser spot condition in real time as well as obtain high-resolution microscopic sample images that inherently register with MSI images. All of these benefits have been demonstrated by analyzing standard samples and imaging of cells. We believe that the enhancement in sensitivity, spatial resolution, and microscope capacity of our design could facilitate spatial omics studies.
Collapse
Affiliation(s)
- Zhi Geng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Qiao Jin
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Lin Liu
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Yuanyuan Huang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xinfeng Zhou
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| |
Collapse
|
2
|
He Q, Sun C, Liu J, Pan Y. MALDI-MSI analysis of cancer drugs: Significance, advances, and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Barré FPY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, Ait-Belkacem R, Garcia JP, Creemers LB, Stauber J, Vreeken RJ, Cillero-Pastor B, Ellis SR, Heeren RMA. Enhanced Sensitivity Using MALDI Imaging Coupled with Laser Postionization (MALDI-2) for Pharmaceutical Research. Anal Chem 2019; 91:10840-10848. [PMID: 31355633 PMCID: PMC6706868 DOI: 10.1021/acs.analchem.9b02495] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Visualizing the distributions of drugs and their metabolites is one of the key emerging application areas of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) within pharmaceutical research. The success of a given MALDI-MSI experiment is ultimately determined by the ionization efficiency of the compounds of interest, which in many cases are too low to enable detection at relevant concentrations. In this work we have taken steps to address this challenge via the first application of laser-postionisation coupled with MALDI (so-called MALDI-2) to the analysis and imaging of pharmaceutical compounds. We demonstrate that MALDI-2 increased the signal intensities for 7 out of the 10 drug compounds analyzed by up to 2 orders of magnitude compared to conventional MALDI analysis. This gain in sensitivity enabled the distributions of drug compounds in both human cartilage and dog liver tissue to be visualized using MALDI-2, whereas little-to-no signal from tissue was obtained using conventional MALDI. This work demonstrates the vast potential of MALDI-2-MSI in pharmaceutical research and drug development and provides a valuable tool to broaden the application areas of MSI. Finally, in an effort to understand the ionization mechanism, we provide the first evidence that the preferential formation of [M + H]+ ions with MALDI-2 has no obvious correlation with the gas-phase proton affinity values of the analyte molecules, suggesting, as with MALDI, the occurrence of complex and yet to be elucidated ionization phenomena.
Collapse
Affiliation(s)
- Florian P Y Barré
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Martin R L Paine
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Bryn Flinders
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Adam J Trevitt
- School of Chemistry , University of Wollongong , Wollongong , Australia
| | - Patrick D Kelly
- School of Chemistry , University of Wollongong , Wollongong , Australia
| | | | - João P Garcia
- University Medical Centre (UMC) Utrecht , Department of Orthopedics , Heidelberglaan 100 , 3584 CX Utrecht , The Netherlands
| | - Laura B Creemers
- University Medical Centre (UMC) Utrecht , Department of Orthopedics , Heidelberglaan 100 , 3584 CX Utrecht , The Netherlands
| | | | - Rob J Vreeken
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands.,Discovery Sciences , Janssen Research and Development , Beerse , Belgium
| | - Berta Cillero-Pastor
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Shane R Ellis
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| |
Collapse
|
4
|
Shirota T, Hoshina K. Generation and Propagation of MALDI Ion Packets Probed by Sheet-Like Nanosecond UV Laser Light. ACTA ACUST UNITED AC 2018; 7:A0071. [PMID: 30588414 PMCID: PMC6305245 DOI: 10.5702/massspectrometry.a0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/09/2018] [Indexed: 11/29/2022]
Abstract
A sheet-like ultraviolet (UV) probe laser is used to investigate the ejection and propagation of ion packets of matrix CHCA, which are produced by matrix-assisted laser desorption and ionization (MALDI). Laser irradiation of the expanding MALDI plume induced photodissociation of the CHCA-related ions, which existed in a sheet-like volume, leading to their absence in their MALDI signal profiles. The MALDI spectra were measured under varying conditions: the temporal delay of the lasers and the distance of the sheet-like probe laser from the MALDI sample surface. It was found that the center of the (CHCA)H+ packets were ejected at 46±11 ns after MALDI laser irradiation, while the (CHCA)2H+ packets were ejected at 64±12 ns, regardless of the magnitude of acceleration static high-voltage in 3.5–5.5 kV. This suggests that (CHCA)2H+ is formed by a proton transfer reaction from (CHCA)H+ to (CHCA)2 in the heated condensed phase and/or near the surface. This study represents the first experimental determination of ion ejection time in the MALDI process, which is also applicable to other species in the MALDI plume.
Collapse
Affiliation(s)
- Tatsuro Shirota
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Kennosuke Hoshina
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| |
Collapse
|