1
|
Zhang J, Lui KH, Zunino R, Jia Y, Morodo R, Warlin N, Hedrick JL, Talarico G, Waymouth RM. Highly Selective O-Phenylene Bisurea Catalysts for ROP: Stabilization of Oxyanion Transition State by a Semiflexible Hydrogen Bond Pocket. J Am Chem Soc 2024; 146:22295-22305. [PMID: 39102651 DOI: 10.1021/jacs.4c04740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Organocatalyzed ring-opening polymerization (ROP) is a versatile technique for synthesizing biodegradable polymers, including polyesters and polycarbonates. We introduce o-phenylene bisurea (OPBU) (di)anions as a novel class of organocatalysts that are fast, easily tunable, mildly basic, and exceptionally selective. These catalysts surpass previous generations, such as thiourea, urea, and TBD, in selectivity (kp/ktr) by 8 to 120 times. OPBU catalysts facilitate the ROP of various monomers, achieving high conversions (>95%) in seconds to minutes, producing polymers with precise molecular weights and very low dispersities (Đ ≈ 1.01). This performance nearly matches the ideal distribution expected from living polymerization (Poisson distribution). Density functional theory (DFT) calculations reveal that the catalysts stabilize the oxyanion transition state via a hydrogen bond pocket similar to the "oxyanion hole" in enzymatic catalysis. Both experimental and theoretical analyses highlight the critical role of the semirigid o-phenylene linker in creating a hydrogen bond pocket that is tight yet flexible enough to accommodate the oxyanion transition state effectively. These new insights have provided a new class of organic catalysts whose accessibility, moderate basicity, excellent solubility, and unparalleled selectivity and tunability open up new opportunities for controlled polymer synthesis.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Kai Hin Lui
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Rachele Zunino
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli 80138, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, Napoli I-80126, Italy
| | - Yuan Jia
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Romain Morodo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Niklas Warlin
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James L Hedrick
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Giovanni Talarico
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli 80138, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, Napoli I-80126, Italy
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
2
|
Song D, Chen J. Regulating the Acidity of SO 3 H-Functionalized Ionic Liquids: Hydrogen Bonding or Electrostatic Potential? Chempluschem 2022; 87:e202200225. [PMID: 36166679 DOI: 10.1002/cplu.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/31/2022] [Indexed: 11/08/2022]
Abstract
The SO3 H-functionalized ionic liquids (ILs) with high acidity are important catalysts for acid-catalyzed reactions. However, the acidity of these ILs have been found to decrease due to intramolecular hydrogen bonds (H-bonds). In this work, a series of anionic SO3 H-functionalized ILs were designed and the factors resulting in weak acidity were investigated, including H-bonds strength and electrostatic potential on the leaving proton (ESPLP). Using catalytic experiment, atoms in molecules topology analysis and electrostatic potential calculation, it was found that the acidity of ILs was correlated with the value of ESPLP rather than the H-bond strength. Meanwhile, there were several ways to increase the acidity of anionic SO3 H-functionalized ILs, such as enhancing the electron-withdrawing ability of cation, introducing H-bond acceptor sites on cation or separating the intramolecular H-bonds through substitution position. These strategies made the conversion of TBA in Friedel-Crafts alkylation increase from 19 % to 84 %.
Collapse
Affiliation(s)
- Dayong Song
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,College of Resources and Environmental Engineering Department, Shandong Agriculture and Engineering University, Jinan, 250100, P. R. China
| | - Jing Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Lane JDE, Berry SN, Lewis W, Ho J, Jolliffe KA. Diaminomethylenemalononitriles and Diaminomethyleneindanediones as Dual Hydrogen Bond Donors for Anion Recognition. J Org Chem 2021; 86:4957-4964. [PMID: 33755453 DOI: 10.1021/acs.joc.0c02801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diaminomethylenemalononitriles (DMMs) and diaminomethyleneindanediones (DMIs) are dual H-bond donors that have previously been used as organocatalysts, but their anion binding ability has not been investigated. We report the synthesis of both alkyl- and aryl-substituted DMMs and DMIs, together with a comparison of their anion binding ability with that of the analogous thioureas. The DMMs display affinity for monovalent anions, with similar anion binding affinities observed to that of the thioureas in acetonitrile, albeit with differing trends for the N,N'-dialkyl versus N,N'-diaryl compounds. In contrast, the DMIs do not bind to monovalent anions under similar conditions as a result of conformational locking through the formation of intramolecular H-bonds. This can be overcome upon addition of sulfate ions, and binding of sulfate is enhanced in a more competitive solvent (DMSO).
Collapse
Affiliation(s)
- Jakob D E Lane
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart N Berry
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Aiding a Better Understanding of Molybdopterin: Syntheses, Structures, and pKa Value Determinations of Varied Pterin-Derived Organic Scaffolds Including Oxygen, Sulfur and Phosphorus Bearing Substituents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Kang HJ, Lee JH, Kim DH, Cho CG. Imidazole-Selective Alkyne Hydroamination under Physiological Conditions. Org Lett 2020; 22:7588-7593. [DOI: 10.1021/acs.orglett.0c02785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hyung-Joon Kang
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Joon-Ho Lee
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Dong-Hyun Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Cheon-Gyu Cho
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
6
|
Tshepelevitsh S, Kütt A, Lõkov M, Kaljurand I, Saame J, Heering A, Plieger PG, Vianello R, Leito I. On the Basicity of Organic Bases in Different Media. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900956] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Agnes Kütt
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Märt Lõkov
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Ivari Kaljurand
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Jaan Saame
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Agnes Heering
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Paul G. Plieger
- School of Fundamental Sciences; Massey University; Private Bag 11 222 Palmerston North New Zealand
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group; Ruđer Bošković Institute; Bijenička cesta 54 10000 Zagreb Croatia
| | - Ivo Leito
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
7
|
A survey of core replacements in indole-based HIV-1 attachment inhibitors. Bioorg Med Chem Lett 2019; 29:1423-1429. [DOI: 10.1016/j.bmcl.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/31/2019] [Accepted: 03/13/2019] [Indexed: 11/18/2022]
|
8
|
|
9
|
Corinti D, Gregori B, Guidoni L, Scuderi D, McMahon TB, Chiavarino B, Fornarini S, Crestoni ME. Complexation of halide ions to tyrosine: role of non-covalent interactions evidenced by IRMPD spectroscopy. Phys Chem Chem Phys 2018; 20:4429-4441. [PMID: 29372198 DOI: 10.1039/c7cp06657k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The binding motifs in the halide adducts with tyrosine ([Tyr + X]-, X = Cl, Br, I) have been investigated and compared with the analogues with 3-nitrotyrosine (nitroTyr), a biomarker of protein nitration, in a solvent-free environment by mass-selected infrared multiple photon dissociation (IRMPD) spectroscopy over two IR frequency ranges, namely 950-1950 and 2800-3700 cm-1. Extensive quantum chemical calculations at B3LYP, B3LYP-D3 and MP2 levels of theory have been performed using the 6-311++G(d,p) basis set to determine the geometry, relative energy and vibrational properties of likely isomers and interpret the measured spectra. A diagnostic carbonyl stretching band at ∼1720 cm-1 from the intact carboxylic group characterizes the IRMPD spectra of both [Tyr + X]- and [nitroTyr + X]-, revealing that the canonical isomers (maintaining intact amino and carboxylic functions) are the prevalent structures. The spectroscopic evidence reveals the presence of multiple non-covalent forms. The halide complexes of tyrosine conform to a mixture of plane and phenol isomers. The contribution of phenol-bound isomers is sensitive to anion size, increasing from chloride to iodide, consistent with the decreasing basicity of the halide, with relative amounts depending on the relative energies of the respective structures. The stability of the most favorable phenol isomer with respect to the reference plane geometry is in fact 1.3, -2.1, -6.8 kJ mol-1, for X = Cl, Br, I, respectively. The change in π-acidity by ring nitration also stabilizes anion-π interactions yielding ring isomers for [nitroTyr + X]-, where the anion is placed above the face of the aromatic ring.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, I-00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zwicker VE, Yuen KKY, Smith DG, Ho J, Qin L, Turner P, Jolliffe KA. Deltamides and Croconamides: Expanding the Range of Dual H‐bond Donors for Selective Anion Recognition. Chemistry 2017; 24:1140-1150. [DOI: 10.1002/chem.201704388] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - David G. Smith
- School of Chemistry The University of Sydney NSW 2006 Australia
| | - Junming Ho
- School of Chemistry University of New South Wales NSW 2052 Australia
| | - Lei Qin
- School of Chemistry The University of Sydney NSW 2006 Australia
| | - Peter Turner
- School of Chemistry The University of Sydney NSW 2006 Australia
| | | |
Collapse
|
11
|
Martin K, Nõges J, Haav K, Kadam SA, Pung A, Leito I. Exploring Selectivity of 22 Acyclic Urea-, Carbazole- and Indolocarbazole-Based Receptors towards 11 Monocarboxylates. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kerli Martin
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Juuli Nõges
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Kristjan Haav
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Sandip A. Kadam
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Astrid Pung
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Ivo Leito
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
12
|
Ho J, Zwicker VE, Yuen KKY, Jolliffe KA. Quantum Chemical Prediction of Equilibrium Acidities of Ureas, Deltamides, Squaramides, and Croconamides. J Org Chem 2017; 82:10732-10736. [DOI: 10.1021/acs.joc.7b02083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Junming Ho
- School
of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- School
of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vincent E. Zwicker
- School
of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karen K. Y. Yuen
- School
of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|