1
|
Lei Z, Chen B, Brooks SD. Effect of Acidity on Ice Nucleation by Inorganic-Organic Mixed Droplets. ACS EARTH & SPACE CHEMISTRY 2023; 7:2562-2573. [PMID: 38148991 PMCID: PMC10749479 DOI: 10.1021/acsearthspacechem.3c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Aerosol acidity significantly influences heterogeneous chemical reactions and human health. Additionally, acidity may play a role in cloud formation by modifying the ice nucleation properties of inorganic and organic aerosols. In this work, we combined our well-established ice nucleation technique with Raman microspectroscopy to study ice nucleation in representative inorganic and organic aerosols across a range of pH conditions (pH -0.1 to 5.5). Homogeneous nucleation was observed in systems containing ammonium sulfate, sulfuric acid, and sucrose. In contrast, droplets containing ammonium sulfate mixed with diethyl sebacate, poly(ethylene glycol) 400, and 1,2,6-hexanetriol were found to undergo liquid-liquid phase separation, exhibiting core-shell morphologies with observed initiation of heterogeneous freezing in the cores. Our experimental findings demonstrate that an increased acidity reduces the ice nucleation ability of droplets. Changes in the ratio of bisulfate to sulfate coincided with shifts in ice nucleation temperatures, suggesting that the presence of bisulfate may decrease the ice nucleation efficiency. We also report on how the morphology and viscosity impact ice nucleation properties. This study aims to enhance our fundamental understanding of acidity's effect on ice nucleation ability, providing context for the role of acidity in atmospheric ice cloud formation.
Collapse
Affiliation(s)
- Ziying Lei
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| | - Bo Chen
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Chen B, Mirrielees JA, Chen Y, Onasch TB, Zhang Z, Gold A, Surratt JD, Zhang Y, Brooks SD. Glass Transition Temperatures of Organic Mixtures from Isoprene Epoxydiol-Derived Secondary Organic Aerosol. J Phys Chem A 2023; 127:4125-4136. [PMID: 37129903 PMCID: PMC10863072 DOI: 10.1021/acs.jpca.2c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The phase states and glass transition temperatures (Tg) of secondary organic aerosol (SOA) particles are important to resolve for understanding the formation, growth, and fate of SOA as well as their cloud formation properties. Currently, there is a limited understanding of how Tg changes with the composition of organic and inorganic components of atmospheric aerosol. Using broadband dielectric spectroscopy, we measured the Tg of organic mixtures containing isoprene epoxydiol (IEPOX)-derived SOA components, including 2-methyltetrols (2-MT), 2-methyltetrol-sulfate (2-MTS), and 3-methyltetrol-sulfate (3-MTS). The results demonstrate that the Tg of mixtures depends on their composition. The Kwei equation, a modified Gordon-Taylor equation with an added quadratic term and a fitting parameter representing strong intermolecular interactions, provides a good fit for the Tg-composition relationship of complex mixtures. By combining Raman spectroscopy with geometry optimization simulations obtained using density functional theory, we demonstrate that the non-linear deviation of Tg as a function of composition may be caused by changes in the extent of hydrogen bonding in the mixture.
Collapse
Affiliation(s)
- Bo Chen
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| | - Jessica A. Mirrielees
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48104, United States
| | - Yuzhi Chen
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Timothy B. Onasch
- Aerodyne
Research, Inc, 45 Manning
Road, Billerica, Massachusetts 01821, United States
| | - Zhenfa Zhang
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
- College
of Arts and Sciences, Department of Chemistry, University of North Carolina at Chapel Hill, Campus Box #3290, 125 South Road, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Alsante AN, Thornton DCO, Brooks SD. Ocean Aerobiology. Front Microbiol 2021; 12:764178. [PMID: 34777320 PMCID: PMC8586456 DOI: 10.3389/fmicb.2021.764178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ocean aerobiology is defined here as the study of biological particles of marine origin, including living organisms, present in the atmosphere and their role in ecological, biogeochemical, and climate processes. Hundreds of trillions of microorganisms are exchanged between ocean and atmosphere daily. Within a few days, tropospheric transport potentially disperses microorganisms over continents and between oceans. There is a need to better identify and quantify marine aerobiota, characterize the time spans and distances of marine microorganisms’ atmospheric transport, and determine whether microorganisms acclimate to atmospheric conditions and remain viable, or even grow. Exploring the atmosphere as a microbial habitat is fundamental for understanding the consequences of dispersal and will expand our knowledge of biodiversity, biogeography, and ecosystem connectivity across different marine environments. Marine organic matter is chemically transformed in the atmosphere, including remineralization back to CO2. The magnitude of these transformations is insignificant in the context of the annual marine carbon cycle, but may be a significant sink for marine recalcitrant organic matter over long (∼104 years) timescales. In addition, organic matter in sea spray aerosol plays a significant role in the Earth’s radiative budget by scattering solar radiation, and indirectly by affecting cloud properties. Marine organic matter is generally a poor source of cloud condensation nuclei (CCN), but a significant source of ice nucleating particles (INPs), affecting the formation of mixed-phase and ice clouds. This review will show that marine biogenic aerosol plays an impactful, but poorly constrained, role in marine ecosystems, biogeochemical processes, and the Earth’s climate system. Further work is needed to characterize the connectivity and feedbacks between the atmosphere and ocean ecosystems in order to integrate this complexity into Earth System models, facilitating future climate and biogeochemical predictions.
Collapse
Affiliation(s)
- Alyssa N Alsante
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Daniel C O Thornton
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Sarah D Brooks
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Ushijima SB, Huynh E, Davis RD, Tolbert MA. Seeded Crystal Growth of Internally Mixed Organic-Inorganic Aerosols: Impact of Organic Phase State. J Phys Chem A 2021; 125:8668-8679. [PMID: 34553594 DOI: 10.1021/acs.jpca.1c04471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atmospheric aerosols are complex with both inorganic and organic components. The soluble inorganics can transition between aqueous and crystalline phases through efflorescence and deliquescence. This study focuses on the efflorescence of (NH4)2SO4/organic particles by seeded crystal growth through contact with a crystal of (NH4)2SO4. Seeded crystal growth is known to effectively shut down supersaturation of aqueous aerosols. Here, we investigate whether organics can inhibit seeded crystal growth. We demonstrate that poly(ethylene glycol) 400 (PEG-400), which phase-separates from the aqueous (NH4)2SO4 and forms a core-shell structure, did not inhibit seeded crystal growth of (NH4)2SO4 at all relative humidity (RH) values below deliquescence RH. The PEG-400 layer was not viscous enough to prevent the diffusion of species through the coating. In contrast, we find that although raffinose, which stays homogeneously mixed with (NH4)2SO4, did not inhibit seeded crystal growth at RH > 45%, it did inhibit heterogeneous efflorescence at lower humidities. Viscosity measurements using an electrodynamic balance show a significant increase in viscosity as humidity was lowered, suggesting that inhibited diffusion of water and ions prevented efflorescence. The observed efflorescence at the higher RH also demonstrates that collisions can induce efflorescence of mixed aerosols that would otherwise not homogeneously effloresce.
Collapse
Affiliation(s)
- Shuichi B Ushijima
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, 216 UCB, Boulder, Colorado 80309, United States
| | - Erik Huynh
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Ryan D Davis
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Margaret A Tolbert
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, 216 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Mael LE, Busse H, Grassian VH. Measurements of Immersion Freezing and Heterogeneous Chemistry of Atmospherically Relevant Single Particles with Micro-Raman Spectroscopy. Anal Chem 2019; 91:11138-11145. [PMID: 31373198 DOI: 10.1021/acs.analchem.9b01819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the atmosphere, there are several different trajectories by which particles can nucleate ice; two of the major pathways are deposition and immersion freezing. Single particle depositional freezing has been widely studied with spectroscopic methods while immersion freezing has been predominantly studied either for particles within bulk aqueous solutions or using optical imaging of single particles. Of the few existing spectroscopic methods that monitor immersion freezing, there are limited opportunities for investigating the impact of heterogeneous chemistry on freezing. Herein, we describe a method that couples a confocal Raman spectrometer with an environmental cell to investigate single particle immersion freezing along with the capability to investigate in situ the impact of heterogeneous reactions with ozone and other trace gases on ice nucleation. This system, which has been rigorously calibrated (temperature and relative humidity) across a large dynamic range, is used to investigate low temperature water uptake and heterogeneous ice nucleation of atmospherically relevant single particles deposited on a substrate. The use of Raman spectroscopy provides important insights into the phase state and chemical composition of ice nuclei and, thus, insights into cloud formation.
Collapse
|
6
|
Charnawskas JC, Alpert PA, Lambe AT, Berkemeier T, O'Brien RE, Massoli P, Onasch TB, Shiraiwa M, Moffet RC, Gilles MK, Davidovits P, Worsnop DR, Knopf DA. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation. Faraday Discuss 2018; 200:165-194. [PMID: 28574555 DOI: 10.1039/c7fd00010c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective Tg and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.
Collapse
Affiliation(s)
- Joseph C Charnawskas
- Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang F, Cruikshank O, He W, Kostinski A, Shaw RA. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops. Phys Rev E 2018; 97:023103. [PMID: 29548219 DOI: 10.1103/physreve.97.023103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/07/2022]
Abstract
Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.
Collapse
Affiliation(s)
- Fan Yang
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA and Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Owen Cruikshank
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Alex Kostinski
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA and Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Raymond A Shaw
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA and Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan 49931, USA
| |
Collapse
|
8
|
Abstract
The role of marine bioaerosols in cloud formation and climate is currently so uncertain that even the sign of the climate forcing is unclear. Marine aerosols form through direct emissions and through the conversion of gas-phase emissions to aerosols in the atmosphere. The composition and size of aerosols determine how effective they are in catalyzing the formation of water droplets and ice crystals in clouds by acting as cloud condensation nuclei and ice nucleating particles, respectively. Marine organic aerosols may be sourced both from recent regional phytoplankton blooms that add labile organic matter to the surface ocean and from long-term global processes, such as the upwelling of old refractory dissolved organic matter from the deep ocean. Understanding the formation of marine aerosols and their propensity to catalyze cloud formation processes are challenges that must be addressed given the major uncertainties associated with aerosols in climate models.
Collapse
Affiliation(s)
- Sarah D Brooks
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Daniel C O Thornton
- Department of Oceanography, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
9
|
Lupi L, Hanscam R, Qiu Y, Molinero V. Reaction Coordinate for Ice Crystallization on a Soft Surface. J Phys Chem Lett 2017; 8:4201-4205. [PMID: 28823159 DOI: 10.1021/acs.jpclett.7b01855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The control of assembly and crystallization of molecules is becoming increasingly important in chemistry, engineering, and materials sciences. Crystallization is also central to understand natural processes that include the formation of atmospheric ice and biomineralization. Organic surfaces, biomolecules, and even liquid/vapor interfaces can promote the nucleation of crystals. These soft surfaces present significant structural fluctuations, which have been shown to strongly impact the rate of crystallization. This raises the question of whether degrees of freedom of soft surfaces play a role in the reaction coordinate for crystal nucleation. Here we use molecular simulations to investigate the mechanism of ice nucleation promoted by an alcohol monolayer. Our analysis indicates that while the flexibility of the surface strongly depresses its ice nucleation ability, it does not play a role in the coordinate that controls the transformation from liquid to ice. We find that the variable that drives the transformation is the size of the crystalline cluster, the same as that for the homogeneous crystallization. We argue that this is a general result that arises from the separation of time scales between surface fluctuations and the crossing of the transition state barrier for crystallization.
Collapse
Affiliation(s)
- Laura Lupi
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Rebecca Hanscam
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yuqing Qiu
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|