Yuan W, Yang D, Feng B, Min Y, Chen Z, Yu S, Wu G, Yang X. Ultrafast decay dynamics of electronically excited 2-ethylpyrrole.
Phys Chem Chem Phys 2021;
23:17625-17633. [PMID:
34369952 DOI:
10.1039/d1cp01090e]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The excited-state decay dynamics of 2-ethylpyrrole following UV excitation in the wavelength range of 254.8-218.0 nm is investigated in detail using the femtosecond time-resolved photoelectron imaging method. The time-resolved photoelectron spectra and photoelectron angular distributions at all pump wavelengths are carefully analysed and the following picture is derived: at the longest pump wavelengths (254.8, 248.3 and 246.1 nm), 2-ethylpyrrole is excited to the S1(1πσ*) state having a lifetime of about 50 fs. At 248.3, 246.1 and 237.4 nm, another excited state of Rydberg character is excited. The lifetime of this state is ∼570 fs at 237.4 nm and becomes slightly longer at other two pump wavelengths. At the shortest pump wavelengths (230.8 and 218.0 nm), 2-ethylpyrrole is excited to a state which is tentatively assigned to the 11ππ* state, having a lifetime of 75 ± 15 and 48 ± 10 fs for the longer and shorter pump wavelengths, respectively. Internal conversion to the S1(1πσ*) state might be one of the decay mechanisms of the 11ππ* state.
Collapse