1
|
Hellmers J, Hedegård ED, König C. Fragmentation-Based Decomposition of a Metalloenzyme-Substrate Interaction: A Case Study for a Lytic Polysaccharide Monooxygenase. J Phys Chem B 2022; 126:5400-5412. [PMID: 35833656 DOI: 10.1021/acs.jpcb.2c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel decomposition scheme for electronic interaction energies based on the flexible formulation of fragmentation schemes through fragment combination ranges (FCRs; J. Chem. Phys., 2021, 155, 164105). We devise a clear additive decomposition with contribution of nondisjoint fragments and correction terms for overlapping fragments and apply this scheme to the metalloenzyme-substrate complex of a lytic polysaccharide monooxygenase (LPMO) with an oligosaccharide. By this, we further illustrate the straightforward adaptability of the FCR-based schemes to novel systems. Our calculations suggest that the description of the electronic structure is a larger error source than the fragmentation scheme. In particular, we find a large impact of the basis set size on the interaction energies. Still, the introduction of three-body interaction terms in the fragmentation setup improves the agreement to the supermolecular reference. Yet, the qualitative results for the decomposition scheme with two-body terms only largely agree within the investigated electronic-structure approaches and basis sets, which are B97-3c, DFT (TPSS and B3LYP), and MP2 methods. The overlap contributions are found to be small, allowing analysis of the interaction energy into individual amino acid residues: We find a particularly strong interaction between the substrate and the LPMO copper active site.
Collapse
Affiliation(s)
- Janine Hellmers
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Carolin König
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
2
|
Abstract
Computational methods for modeling biochemical processes implemented in GAMESS package are reviewed; in particular, quantum mechanics combined with molecular mechanics (QM/MM), semi-empirical, and fragmentation approaches. A detailed summary of capabilities is provided for the QM/MM implementation in QuanPol program and the fragment molecular orbital (FMO) method. Molecular modeling and visualization packages useful for biochemical simulations with GAMESS are described. GAMESS capabilities with corresponding references are tabulated for reader's convenience.
Collapse
|
3
|
Kaliakin DS, Nakata H, Kim Y, Chen Q, Fedorov DG, Slipchenko LV. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method. J Chem Theory Comput 2020; 16:1175-1187. [PMID: 31841349 DOI: 10.1021/acs.jctc.9b00621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to study Förster resonance energy transfer (FRET), the fragment molecular orbital (FMO) method is extended to compute electronic couplings between local excitations via the excited state transition density model, enabling efficient calculations of nonlocal excitations in a large molecular system and overcoming the previous limitation of being able to compute only local excitations. The results of these simple but accurate models are validated against full quantum calculations without fragmentation. The developed method is applied to a very important photosynthetic pigment-protein complex, the Fenna-Matthews-Olson complex (FMOc), that is responsible for the energy transfer from a chlorosome to the reaction center in the green sulfur bacteria. Absorption and circular dichroism spectra of FMOc are simulated, and the role of the molecular environment on the excitations is revealed.
Collapse
Affiliation(s)
- Danil S Kaliakin
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Hiroya Nakata
- Research Institute for Advanced Materials and Devices , Kyocera , 5-3 Hikaridai-3 , Seika-cho Soraku-gun, Kyoto 619-0237 , Japan
| | - Yongbin Kim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Qifeng Chen
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 2, Umezono 1-1-1 , Tsukuba 305-8568 , Japan
| | - Lyudmila V Slipchenko
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
4
|
Grillo IB, Urquiza‐Carvalho GA, Chaves EJF, Rocha GB. Semiempirical methods do Fukui functions: Unlocking a modeling framework for biosystems. J Comput Chem 2020; 41:862-873. [DOI: 10.1002/jcc.26148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/15/2019] [Accepted: 01/01/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Igor Barden Grillo
- Departamento de Química Universidade Federal da Paraíba João Pessoa Brazil
| | | | | | - Gerd Bruno Rocha
- Departamento de Química Universidade Federal da Paraíba João Pessoa Brazil
| |
Collapse
|
5
|
Abstract
Basic concepts in the analysis of binding using the fragment molecular orbital method are discussed at length: polarization, desolvation, and interaction. The components in the pair interaction energy decomposition analysis are introduced, and the analysis is illustrated for a water dimer and a protein-ligand complex.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
6
|
Ranaghan KE, Shchepanovska D, Bennie SJ, Lawan N, Macrae SJ, Zurek J, Manby FR, Mulholland AJ. Projector-Based Embedding Eliminates Density Functional Dependence for QM/MM Calculations of Reactions in Enzymes and Solution. J Chem Inf Model 2019; 59:2063-2078. [PMID: 30794388 DOI: 10.1021/acs.jcim.8b00940] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems. Here, we apply a range of QM/MM methods to investigate the Claisen rearrangement of chorismate to prephenate, in solution, and in the enzyme chorismate mutase. Using projector-based embedding in a QM/MM framework, we apply treatments up to the CCSD(T) level. We test a range of density functional QM/MM methods and QM region sizes. The results show that the calculated reaction energetics are significantly more sensitive to the choice of density functional than they are to the size of the QM region in these systems. Projector-based embedding of a wave function method in DFT reduced the 13 kcal/mol spread in barrier heights calculated at the DFT/MM level to a spread of just 0.3 kcal/mol, essentially eliminating dependence on the functional. Projector-based embedding of correlated ab initio methods provides a practical method for achieving high accuracy for energy profiles derived from DFT and DFT/MM calculations for reactions in condensed phases.
Collapse
Affiliation(s)
- Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Darya Shchepanovska
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Simon J Bennie
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Narin Lawan
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Stephen J Macrae
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Jolanta Zurek
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Frederick R Manby
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| |
Collapse
|
7
|
Freindorf M, Tao Y, Sethio D, Cremer D, Kraka E. New mechanistic insights into the Claisen rearrangement of chorismate – a Unified Reaction Valley Approach study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1530464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Daniel Sethio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
8
|
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in
GAMESS
, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD‐FMat)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|