1
|
Quapp W, Bofill JM. Theory and Examples of Catch Bonds. J Phys Chem B 2024; 128:4097-4110. [PMID: 38634732 DOI: 10.1021/acs.jpcb.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We discuss slip bonds, catch bonds, and the tug-of-war mechanism using mathematical arguments. The aim is to explain the theoretical tool of molecular potential energy surfaces (PESs). For this, we propose simple 2-dimensional surface models to demonstrate how a molecule under an external force behaves. Examples are selectins. Catch bonds, in particular, are explained in more detail, and they are contrasted to slip bonds. We can support special two-dimensional molecular PESs for E- and L-selectin which allow the catch bond property. We demonstrate that Newton trajectories (NT) are powerful tools to describe these phenomena. NTs form the theoretical background of mechanochemistry.
Collapse
Affiliation(s)
- Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, Leipzig D-04009, Germany
| | - Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
2
|
Barkan CO, Bruinsma RF. Topology of molecular deformations induces triphasic catch bonding in selectin-ligand bonds. Proc Natl Acad Sci U S A 2024; 121:e2315866121. [PMID: 38294934 PMCID: PMC10861892 DOI: 10.1073/pnas.2315866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Among the long-standing efforts to elucidate the physical mechanisms of protein-ligand catch bonding, particular attention has been directed at the family of selectin proteins. Selectins exhibit slip, catch-slip, and slip-catch-slip bonding, with minor structural modifications causing major changes in selectins' response to force. How can a single structural mechanism allow interconversion between these various behaviors? We present a unifying theory of selectin-ligand catch bonding, using a structurally motivated free energy landscape to show how the topology of force-induced deformations of the molecular system produces the full range of observed behaviors. We find that the pathway of bond rupture deforms in non-trivial ways, such that unbinding dynamics depend sensitively on force. This implies a severe breakdown of Bell's theory-a paradigmatic theory used widely in catch bond modeling-raising questions about the suitability of Bell's theory in modeling other catch bonds. Our approach can be applied broadly to other protein-ligand systems.
Collapse
Affiliation(s)
- Casey O. Barkan
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| | - Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| |
Collapse
|
3
|
Bofill JM, Quapp W, Albareda G, Moreira IDPR, Ribas-Ariño J. Controlling Chemical Reactivity with Optimally Oriented Electric Fields: A Generalization of the Newton Trajectory Method. J Chem Theory Comput 2022; 18:935-952. [PMID: 35044173 DOI: 10.1021/acs.jctc.1c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of oriented external electric fields (OEEF) as a tool to accelerate chemical reactions has recently attracted much interest. A new model to calculate the optimal OEEF of the least intensity to induce a barrierless chemical reaction path is presented. A suitable ansatz is provided by defining an effective potential energy surface (PES), which considers the unperturbed or original PES of the molecular reactive system and the action of a constant OEEF on the overall dipole moment of system. Based on a generalization of the Newton Trajectories (NT) method, it is demonstrated that the optimal OEEF can be determined upon locating a special point of the potential energy surface (PES), the so-called "optimal bond-breaking point" (optimal BBP), for which two different algorithms are proposed. At this point, the gradient of the original or unperturbed PES is an eigenvector of zero eigenvalue of the Hessian matrix of the effective PES. A thorough discussion of the geometrical aspects of the optimal BBP and the optimal OEEF is provided using a two-dimensional model, and numerical calculations of the optimal OEEF for a SN2 reaction and the 1,3-dipolar retrocycloaddition of isoxazole to fulminic acid plus acetylene reaction serve as a proof of concept. The knowledge of the orientation of optimal OEEF provides a practical way to reduce the effective barrier of a given chemical process.
Collapse
Affiliation(s)
- Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, D-04009 Leipzig, Germany
| | - Guillermo Albareda
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ibério de P R Moreira
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Jordi Ribas-Ariño
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Fang Y, Yang X, Lin Y, Shi J, Prominski A, Clayton C, Ostroff E, Tian B. Dissecting Biological and Synthetic Soft-Hard Interfaces for Tissue-Like Systems. Chem Rev 2021; 122:5233-5276. [PMID: 34677943 DOI: 10.1021/acs.chemrev.1c00365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soft and hard materials at interfaces exhibit mismatched behaviors, such as mismatched chemical or biochemical reactivity, mechanical response, and environmental adaptability. Leveraging or mitigating these differences can yield interfacial processes difficult to achieve, or inapplicable, in pure soft or pure hard phases. Exploration of interfacial mismatches and their associated (bio)chemical, mechanical, or other physical processes may yield numerous opportunities in both fundamental studies and applications, in a manner similar to that of semiconductor heterojunctions and their contribution to solid-state physics and the semiconductor industry over the past few decades. In this review, we explore the fundamental chemical roles and principles involved in designing these interfaces, such as the (bio)chemical evolution of adaptive or buffer zones. We discuss the spectroscopic, microscopic, (bio)chemical, and computational tools required to uncover the chemical processes in these confined or hidden soft-hard interfaces. We propose a soft-hard interaction framework and use it to discuss soft-hard interfacial processes in multiple systems and across several spatiotemporal scales, focusing on tissue-like materials and devices. We end this review by proposing several new scientific and engineering approaches to leveraging the soft-hard interfacial processes involved in biointerfacing composites and exploring new applications for these composites.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiuyun Shi
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander Prominski
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Clementene Clayton
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ellie Ostroff
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Pladevall BS, de Aguirre A, Maseras F. Understanding Ball Milling Mechanochemical Processes with DFT Calculations and Microkinetic Modeling. CHEMSUSCHEM 2021; 14:2763-2768. [PMID: 33843150 DOI: 10.1002/cssc.202100497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Mechanochemistry is an emerging field with many potential applications in sustainable chemistry. But despite the growing interest in the field, its underlying mechanistic foundations are not fully understood yet. This work presents the application of computational tools, such as DFT calculations in continuum and microkinetic modeling, to the analysis of mechanically activated procedures. Two reactions reported in previous experimental publications were studied: (i) a series of Diels-Alder reactions and (ii) the synthesis of sulfonylguanidines. Calculations succeed in reproducing experimentally reported reaction times. The procedures were mostly standard, coupled with some sensitive choices in terms of starting concentrations and dielectric constant. This means that these particular reactions accelerated by ball milling followed the same mechanism as the equivalent reactions in solution. The implications of this result on the general picture of mechanochemical processes are discussed.
Collapse
Affiliation(s)
- Bruna S Pladevall
- Institute of Chemical Research of Catalonia, The Barcelona Institute for Science and Technology, Avgda. Països Catalans, 16, Tarragona, 43007, Catalonia, Spain
| | - Adiran de Aguirre
- Institute of Chemical Research of Catalonia, The Barcelona Institute for Science and Technology, Avgda. Països Catalans, 16, Tarragona, 43007, Catalonia, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia, The Barcelona Institute for Science and Technology, Avgda. Països Catalans, 16, Tarragona, 43007, Catalonia, Spain
| |
Collapse
|
6
|
Bofill JM, Valero R, Ribas-Ariño J, Quapp W. Barnes Update Applied in the Gauss-Newton Method: An Improved Algorithm to Locate Bond Breaking Points. J Chem Theory Comput 2021; 17:996-1007. [PMID: 33464895 DOI: 10.1021/acs.jctc.0c00910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A mechanochemical reaction is a reaction induced by mechanical energy. A general accepted model for this type of reaction consists of a first-order perturbation on the associated potential energy surface (PES) of the unperturbed molecular system due to mechanical stress or pulling force. Within this theoretical framework, the so-called optimal barrier breakdown points or optimal bond breaking points (BBPs) are critical points of the unperturbed PES where the Hessian matrix has a zero eigenvector that coincides with the gradient vector. Optimal BBPs are "catastrophe points" that are particularly important because their associated gradient indicates how to optimally harness tensile forces to induce reactions by transforming a chemical reaction into a barrierless process. Building on a previous method based on a nonlinear least-squares minimization to locate BBPs (Bofill et al., J. Chem. Phys. 2017, 147, 152710-10), we propose a new algorithm to locate BBPs of any molecular system based on the Gauss-Newton method combined with the Barnes update for a nonsymmetric Jacobian matrix, which is shown to be more appropriate than the Broyden update. The efficiency of the new method is demonstrated for a multidimensional model PES and two medium size molecular systems of interest in enzymatic catalysis and mechanochemistry.
Collapse
Affiliation(s)
- Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Rosendo Valero
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Jordi Ribas-Ariño
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, D-04009 Leipzig, Germany
| |
Collapse
|
7
|
Quapp W, Bofill JM. Some Mathematical Reasoning on the Artificial Force Induced Reaction Method. J Comput Chem 2020; 41:629-634. [PMID: 31792984 DOI: 10.1002/jcc.26115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/07/2022]
Abstract
There are works of the Maeda-Morokuma group, which propose the artificial force induced reaction (AFIR) method (Maeda et al., J. Comput. Chem. 2014, 35, 166 and 2018, 39, 233). We study this important method from a theoretical point of view. The understanding of the proposers does not use the barrier breakdown point of the AFIR parameter, which usually is half of the reaction path between the minimum and the transition state which is searched for. Based on a comparison with the theory of Newton trajectories, we could better understand the method. It allows us to follow along some reaction pathways from minimum to saddle point, or vice versa. We discuss some well-known two-dimensional test surfaces where we calculate full AFIR pathways. If one has special AFIR curves at hand, one can also study the behavior of the ansatz. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wolfgang Quapp
- Leipzig University, Mathematisches Institut, Universität Leipzig, PF 100920, D-04009, Leipzig, Germany
| | - Josep Maria Bofill
- Universitat de Barcelona, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, and Institut de Química Teòrica i Computacional, Universitat de Barcelona, (IQTCUB), Martí i Franquès, 1, 08028, Barcelona, Spain
| |
Collapse
|
8
|
Quapp W, Bofill JM. Comment on "Exploring Potential Energy Surface with External Forces". J Chem Theory Comput 2020; 16:811-815. [PMID: 31725299 DOI: 10.1021/acs.jctc.9b00736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, a work (Wolinski, K., J. Chem. Theory Comput. 2018, 14, 6306, 10.1021/acs.jctc.8b00885 ) was published in which the SEGO method (standard and enforced geometry optimization) was proposed to find new minimums on potential energy surfaces. We study this important method from a theoretical point of view. Up to now, the understanding of the proposer does not take into account the barrier breakdown point on a SEGO path being usually half of the path, which is searched for. However, a better understanding of the method allows us to follow along the reaction pathway from a minimum to a saddle point or vice versa. We discuss the well-known two-dimensional MB test surface where we calculate full SEGO pathways. If one has special SEGO curves at hand, one can also detect some weaknesses of the ansatz.
Collapse
Affiliation(s)
- Wolfgang Quapp
- Mathematisches Institut , Universität Leipzig , PF 100920, D-04009 Leipzig , Germany
| | - Josep Maria Bofill
- Departament de Química Inorgánica i Orgánica, Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès, 1, 08028 Barcelona , Spain
| |
Collapse
|
9
|
Climent C, Galego J, Garcia‐Vidal FJ, Feist J. Plasmonic Nanocavities Enable Self-Induced Electrostatic Catalysis. Angew Chem Int Ed Engl 2019; 58:8698-8702. [PMID: 30969014 PMCID: PMC6973273 DOI: 10.1002/anie.201901926] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/20/2022]
Abstract
The potential of strong interactions between light and matter remains to be further explored within a chemical context. Towards this end herein we study the electromagnetic interaction between molecules and plasmonic nanocavities. By means of electronic structure calculations, we show that self-induced catalysis emerges without any external stimuli through the interaction of the molecular permanent and fluctuating dipole moments with the plasmonic cavity modes. We also exploit this scheme to modify the transition temperature T1/2 of spin-crossover complexes as an example of how strong light-matter interactions can ultimately be used to control a materials responses.
Collapse
Affiliation(s)
- Clàudia Climent
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid28049MadridSpain
| | - Javier Galego
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid28049MadridSpain
| | - Francisco J. Garcia‐Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid28049MadridSpain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid28049MadridSpain
| |
Collapse
|
10
|
Climent C, Galego J, Garcia‐Vidal FJ, Feist J. Plasmonic Nanocavities Enable Self‐Induced Electrostatic Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clàudia Climent
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Javier Galego
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Francisco J. Garcia‐Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
11
|
Mejía L, Franco I. Force-conductance spectroscopy of a single-molecule reaction. Chem Sci 2019; 10:3249-3256. [PMID: 30996909 PMCID: PMC6429593 DOI: 10.1039/c8sc04830d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/24/2019] [Indexed: 01/23/2023] Open
Abstract
We demonstrate how simultaneous measurements of conductance and force can be used to monitor the step-by-step progress of a mechanically-activated cis-to-trans isomerization single-molecule reaction, including events that cannot be distinguished using force or conductance alone. To do so, we simulated the force-conductance profile of cyclopropane oligomers connected to graphene nanoribbon electrodes that undergo a cis-to-trans isomerization during mechanical elongation. This was done using a combination of classical molecular dynamics simulation of the pulling using a reactive force field, and Landauer transport computations of the conductance with nonequilibrium Green's function methods. The isomerization events can be distinguished in both force and conductance profiles. However, the conductance profile during the mechanical elongation distinguishes between reaction intermediates that cannot be resolved using force. In turn, the force signals non-reactive deformations in the molecular backbone which are not visible in the conductance profile. These observations are shown to be robust to the choice of electrode and Hamiltonian model. The computations exemplify the potential of the integration of covalent mechanochemistry with molecular conductance to investigate chemical reactivity at the single-entity limit.
Collapse
Affiliation(s)
- Leopoldo Mejía
- Department of Chemistry , University of Rochester , Rochester , New York 14627-0216 , USA .
| | - Ignacio Franco
- Department of Chemistry , University of Rochester , Rochester , New York 14627-0216 , USA .
- Department of Physics , University of Rochester , Rochester , New York 14627-0216 , USA
| |
Collapse
|
12
|
Affiliation(s)
- W. Quapp
- Mathematisches Institut, Universität Leipzig, Leipzig, Germany
| | - J. M. Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, and Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Bofill JM, Ribas-Ariño J, García SP, Quapp W. An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis. J Chem Phys 2017; 147:152710. [PMID: 29055306 DOI: 10.1063/1.4994925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.
Collapse
Affiliation(s)
- Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, and Institut de Química Teòrica i Computacional, Universitat de Barcelona (IQTCUB), Barcelona, Spain
| | - Jordi Ribas-Ariño
- Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona and Institut de Química Teòrica i Computacional, Universitat de Barcelona (IQTCUB), Barcelona, Spain
| | - Sergio Pablo García
- Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona and Institut de Química Teòrica i Computacional, Universitat de Barcelona (IQTCUB), Barcelona, Spain
| | - Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, D-04009 Leipzig, Germany
| |
Collapse
|