1
|
Luo Y, Zhao M, Wang Y. Mechanism and Origin of Stereoselectivity of N-Heterocyclic Carbene (NHC)-Catalyzed Transformation Reaction of Benzaldehyde with o-QDM as Key Intermediate: A DFT Study. J Phys Chem A 2024; 128:6190-6198. [PMID: 39024177 DOI: 10.1021/acs.jpca.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
N-heterocyclic carbene (NHC)-bound ortho-quinodimethane, served as a nucleophile, has occupied an important position for constructing various all-carbon or heterocyclic compounds and attracted increasing attention for the functionalization of benzylic carbon of aromatic aldehydes, whereas the mechanistic studies on the generation and transformations of dienolate intermediate are rare. In the present study, the mechanism of activation/transformation of aldehyde catalyzed by NHC was theoretically studied using the density functional theory (DFT) method. Based on the calculations, the nucleophilic addition process is the stereoselectivity-determining step with RS-configured product being generated preferentially. Furthermore, non-covalent index (NCI) and atoms-in-molecules (AIM) analyses have been performed to disclose the origin of stereoselectivity, by which the larger number and stronger weak interactions are the key for stabilizing the low-energy transition state and thus leading to the stereoselectivity inducing.
Collapse
Affiliation(s)
- Yilu Luo
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Miao Zhao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital & Zhengzhou Children's Hospital, Zhengzhou 450018, Henan, P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
2
|
Ma J, Qi S, Yan G, Kirillov AM, Yang L, Fang R. DFT Study on the Mechanisms and Selectivities in Rh (III)-Catalyzed [5 + 1] Annulation of 2-Alkenylanilides and 2-Alkylphenols with Allenyl Acetates. J Org Chem 2024; 89:8562-8577. [PMID: 38847049 DOI: 10.1021/acs.joc.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The mechanisms and regio-, chemo-, and stereoselectivity were theoretically investigated in the Rh(III)-catalyzed [5 + 1] annulation of 2-alkenylanilides and 2-alkylphenols with allenyl acetates. Two different reactants, 2-alkenylanilides and 2-alkylphenols, were selected as model systems in the density functional theory calculations. The obtained theoretical results show that both these reactants exhibit similar steps, namely, (1) N-H/O-H deprotonation and C-H activation, (2) allenyl acetate migratory insertion, (3) β-oxygen elimination, (4) intramolecular nucleophilic addition of the nitrogen/oxygen-rhodium bond resulting in [5 + 1]-annulation, and (5) protonation with the formation of the desired product and regeneration of the Rh(III) catalyst. The theoretical evidence suggests that the selectivity is determined at the step of allenyl acetate's migratory insertion. Moreover, the regioselectivity is driven by electronic effects, while the interaction energies (C-H···π and C-H···O interactions) play a more imperative role in controlling the stereoselectivity. The obtained theoretical results not only well rationalize the experimental observations but also provide important mechanistic insights for related types of [5 + 1]-annulation reactions.
Collapse
Affiliation(s)
- Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
3
|
Kong S, Zhang M, Wang S, Wu H, Zou H, Huang G. Mechanism and Origins of Diastereo- and Regioselectivities of Palladium-Catalyzed Remote Diborylative Cyclization of Dienes via Chain-Walking Strategy. Chem Asian J 2023; 18:e202201057. [PMID: 36415038 DOI: 10.1002/asia.202201057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Density functional theory calculations have been performed to investigate the palladium-catalyzed remote diborylative cyclization of dienes. The computations reveal that the reaction proceeds through a rarely explored Pd(II)/Pd(IV) catalytic cycle, and the formal σ-bond metathesis between the alkylpalladium intermediate and B2 pin2 occurs via the pathway of the B-B oxidative addition/C-B reductive elimination involving the high-valent Pd(IV) species. The diastereoselectivity is determined by the migratory insertion into the Pd-C bond, which is mainly due to the combination of the torsional strain effect, steric repulsion and C-H-O hydrogen-bonding interaction. The steric hindrance around the reacting carbon group in the C-B reductive elimination turns out to be a key factor to provide the driving force of the chain walking of the Pd center to the terminal primary carbon position, enabling the experimentally observed remote regioselectivity.
Collapse
Affiliation(s)
- Shuqi Kong
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Mengyao Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyu Wang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongli Wu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
4
|
Zhang XH, Wu X, Shi HX. Mechanistic investigation on rhodium(III)-catalyzed cycloaddition of 2-vinylphenol derivatives with ethyne or carbon monoxide by DFT study. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2009172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Rhodium-catalyzed cycloaddition reaction was calculated by density functional theory M06-2X method to directly synthesize benzoxepine and coumarin derivatives. In this work, we conducted a computational study of two competitive mechanisms in which the carbon atom of acetylene or carbon monoxide attacked and inserted from two different directions of the six-membered ring reactant to clarify the principle characteristics of this transformation. The calculation results reveal that: (i) the insertion process of alkyne or carbon monoxide is the key step of the reaction; (ii) for the (5+2) cycloaddition reaction of acetylene, higher energy is required to break the Rh−O bond of the reactant, and the reaction tends to complete the insertion from the side of the Rh−C bond; (iii) for the (5+1) cycloaddition of carbon monoxide, both reaction paths have lower activation free energy, and the two will generate a competition mechanism.
Collapse
Affiliation(s)
- Xing-hui Zhang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| | - Xi Wu
- School of Foreign Languages, Lanzhou University of Arts and Science, Lanzhou 730010, China
| | - Hai-xiong Shi
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| |
Collapse
|
5
|
Wang YN, Wang X, Li SJ, Lan Y. Carbene-enabled ether activation through the formation of oxonium: a theoretical view. Org Chem Front 2022. [DOI: 10.1039/d1qo01730f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we report a theoretical investigation of the reactivity and chemoselectivity of carbene-enabled ether activation.
Collapse
Affiliation(s)
- Ya-Nan Wang
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Xinghua Wang
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
6
|
Synergistic Dinuclear Rhodium Induced Rhodium-Walking Enabling Alkene Terminal Arylation: A Theoretical Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
He X, Zhu L, Heng D, Liu F, Liu S, Zhong K, Shan C, Bai R, Lan Y. Mechanistic insights into the rhodium–copper cascade catalyzed dual C–H annulation of indoles. Org Chem Front 2021. [DOI: 10.1039/d0qo01332c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) calculations have been performed to provide mechanistic insight into the Rh/Cu co-catalyzed multicomponent annulation of indoles, diazo compounds, and α,β-unsaturated esters.
Collapse
Affiliation(s)
- Xiaoqian He
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Dan Heng
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Fenru Liu
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Chunhui Shan
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Yu Lan
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| |
Collapse
|
8
|
Grimblat N, Sarotti AM. Looking at the big picture in activation strain model/energy decomposition analysis: the case of the ortho-para regioselectivity rule in Diels-Alder reactions. Org Biomol Chem 2020; 18:1104-1111. [PMID: 31950965 DOI: 10.1039/c9ob02671a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regioselectivity of the Diels-Alder reaction is predicted by the ortho-para rule which has been explained from FMO theory. Using DFT calculations, the activation-strain model and energy decomposition analysis we studied the reaction of methyl acrylate with four unsymmetrical dienes. We found that if the analysis is carried out considering the TS structures, the selectivity would not be explained by the interaction energy as expected considering the FMO arguments. However, a thorough analysis along the reaction path revealed that the interaction energy is responsible for the regioselectivity. A deeper analysis with the EDA model showed that the decisive term that accounts for the HOMO-LUMO interactions favors the ortho and para paths, as predicted by FMO arguments.
Collapse
Affiliation(s)
- Nicolás Grimblat
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
9
|
Li Y, Chen H, Qu LB, Houk KN, Lan Y. Origin of Regiochemical Control in Rh(III)/Rh(V)-Catalyzed Reactions of Unsaturated Oximes and Alkenes to Form Pyrdines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02085] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingzi Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| | - Yu Lan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
10
|
Querard P, Li CJ. Direct synthesis of indenes via a rhodium-catalyzed multicomponent C sp2-H annulation reaction. Org Biomol Chem 2019; 16:8042-8047. [PMID: 30349921 DOI: 10.1039/c8ob02359j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient, direct and multicomponent route for the synthesis of indenes is reported herein. This process is catalyzed by a rhodium(iii) complex and conducted under very mild conditions, making the overall process atom and step-economical. DFT mechanistic studies were performed to explore the mechanism of this reaction system.
Collapse
Affiliation(s)
- Pierre Querard
- Department of Chemistry, and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | | |
Collapse
|
11
|
Yang Z, Pi C, Cui X, Wu Y. One-pot synthesis of pyranoquinolin-1-ones via Rh(iii)-catalysed redox annulation of 3-carboxyquinolines and alkynes. Org Chem Front 2019. [DOI: 10.1039/c9qo00710e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A highly efficient and simple one-pot procedure to synthesize 3,4-dihydro-pyrano[4,3-b]quinolin-1-ones via Rh(iii)-catalysed [4 + 2] redox annulation of 3-carboxyquinolines with internal alkynes.
Collapse
Affiliation(s)
- Zhijia Yang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Chao Pi
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Xiuling Cui
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
12
|
Ni SF, Zhang P, Chu CQ, Qin P, Dang L. Computational Studies on the Mechanism of Rh-Catalyzed Decarbonylative [5+2-1] Reaction between Isatins and Alkynes: High Selectivity by Directing Group. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province; Shantou University; 515063 Guangdong P. R. China
| | - Pan Zhang
- Department of Chemistry in; Southern University of Science and Technology; 518055 Shenzhen P. R. China
| | - Chang-qing Chu
- Department of Chemistry in; Southern University of Science and Technology; 518055 Shenzhen P. R. China
| | - Peng Qin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province; Shantou University; 515063 Guangdong P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province; Shantou University; 515063 Guangdong P. R. China
- Department of Chemistry in; Southern University of Science and Technology; 518055 Shenzhen P. R. China
| |
Collapse
|
13
|
Liu S, Qi X, Qu LB, Bai R, Lan Y. C–H bond cleavage occurring on a Rh(v) intermediate: a theoretical study of Rh-catalyzed arene azidation. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02367g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our theoretical calculations indicated that the oxidation of Rh(iii) to Rh(v) by PhI(OAc)OTs is a facile process. Subsequent electrophilic deprotonation was shown to occur from a Rh(v) intermediate rather than a Rh(iii) intermediate.
Collapse
Affiliation(s)
- Song Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Xiaotian Qi
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Yu Lan
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400030
- China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
14
|
Qi X, Li Y, Bai R, Lan Y. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation. Acc Chem Res 2017; 50:2799-2808. [PMID: 29112396 DOI: 10.1021/acs.accounts.7b00400] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transition-metal-catalyzed cross-coupling has emerged as an effective strategy for chemical synthesis. Within this area, direct C-H bond transformation is one of the most efficient and environmentally friendly processes for the construction of new C-C or C-heteroatom bonds. Over the past decades, rhodium-catalyzed C-H functionalization has attracted considerable attention because of the versatility and wide use of rhodium catalysts in chemistry. A series of C-X (X = C, N, or O) bond formation reactions could be realized from corresponding C-H bonds using rhodium catalysts. Various experimental studies on rhodium-catalyzed C-H functionalization reactions have been reported, and in tandem, mechanistic and computational studies have also progressed significantly. Since 2012, our group has performed theoretical studies to reveal the mechanism of rhodium-catalyzed C-H functionalization reactions. We have studied the changes in the oxidation state of rhodium and compared the Rh(I)/Rh(III) catalytic cycle to the Rh(III)/Rh(V) catalytic cycle using density functional theory calculation. The development of advanced computational methods and improvements in computing power make theoretical calculation a powerful tool for the mechanistic study of rhodium chemistry. Computational study is able to not only provide mechanistic insights but also explain the origin of regioselectivity, enantioselectivity, and stereoselectivity in rhodium-catalyzed C-H functionalization reactions. This Account summarizes our computational work on rhodium-catalyzed C-H functionalization reactions. The mechanistic study under discussion is divided into three main parts: C-H bond cleavage step, transformation of the C-Rh bond, and regeneration of the active catalyst. In the C-H bond cleavage step, computational results of four possible mechanisms, including concerted metalation-deprotonation (CMD), oxidative addition (OA), Friedel-Crafts-type electrophilic aromatic substitution (SEAr), and σ-complex assisted metathesis (σ-CAM) are discussed. Subsequent transformation of the C-Rh bond, for example, via insertion of CO, olefin, alkyne, carbene, or nitrene, constructs new C-C or C-heteroatom bonds. For the regeneration of the active catalyst, reductive elimination of a high-valent rhodium complex and protonation of the C-Rh bond are emphasized as potential mechanism candidates. In addition to detailing the reaction pathway, the regioselectivity and diastereoselectivity of rhodium-catalyzed C-H functionalization reactions are also commented upon in this Account. The origin of the selectivity is clarified through theoretical analysis. Furthermore, we summarize and compare the changes in the oxidation state of rhodium along the complete reaction pathway. The work described in this Account demonstrates that rhodium catalysis might proceed via Rh(I)/Rh(III), Rh(II)/Rh(IV), Rh(III)/Rh(V), or non-redox-Rh(III) catalytic cycles.
Collapse
Affiliation(s)
- Xiaotian Qi
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yingzi Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|