1
|
Pal R, Chattaraj PK. On the Nature of the Partial Covalent Bond between Noble Gas Elements and Noble Metal Atoms. Molecules 2023; 28:molecules28073253. [PMID: 37050016 PMCID: PMC10096529 DOI: 10.3390/molecules28073253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
This article provides a discussion on the nature of bonding between noble gases (Ng) and noble metals (M) from a quantum chemical perspective by investigating compounds such as NgMY (Y=CN, O, NO3, SO4, CO3), [NgM-(bipy)]+, NgMCCH, and MCCNgH complexes, where M=Cu, Ag, Au and Ng=Kr-Rn, with some complexes containing the lighter noble gas atoms as well. Despite having very low chemical reactivity, noble gases have been observed to form weak bonds with noble metals such as copper, gold, and silver. In this study, we explore the factors that contribute to this unusual bonding behavior, including the electronic structure of the atoms involved and the geometric configuration of the concerned fragments. We also investigate the metastable nature of the resulting complexes by studying the energetics of their possible dissociation and internal isomerization channels. The noble gas-binding ability of the bare metal cyanides are higher than most of their bromide counterparts, with CuCN and AgCN showing higher affinity than their chloride analogues as well. In contrast, the oxides seem to have lower binding power than their corresponding halides. In the oxide and the bipyridyl complexes, the Ng-binding ability follows the order Au > Cu > Ag. The dissociation energies calculated, considering the zero-point energy correction for possible dissociation channels, increase as we move down the noble gas group. The bond between the noble gases and the noble metals in the complexes are found to have comparable weightage of orbital and electrostatic interactions, suggestive of a partial covalent nature. The same is validated from the topological analysis of electron density.
Collapse
Affiliation(s)
- Ranita Pal
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
2
|
Jana G, Pal R, Chattaraj PK. XNgNSi (X = HCC, F; Ng = Kr, Xe, Rn): A New Class of Metastable Insertion Compounds Containing Ng-C/F and Ng-N Bonds and Possible Isomerization therein. J Phys Chem A 2021; 125:10514-10523. [PMID: 34747606 DOI: 10.1021/acs.jpca.1c07677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, astronomically important silaisocyanoacetylene (HCCNSi) possessing a large dipole moment has been detected for the first time with the help of crossed molecular beam experiments. Quantum chemical computations at higher levels of theory have also been performed to characterize the transient species. In this study, we have analyzed the equilibrium geometry, stability, reactivity, and energetics as well as the nature of bonding in the noble gas (Ng) inserted HCCNSi compound. We have also considered its F analogue to understand the influence of the most electronegative atom in the compound. Metastable behavior of the XNgNSi compounds (X = HCC, F; Ng = Kr-Rn) is examined by calculating thermochemical parameters like free energy change (ΔG) and zero-point-energy-corrected dissociation energy (D0) at 298 K for all possible two-body (2B) and three-body (3B) (both neutral as well as ionic) dissociation channels using coupled-cluster theory [CCSD(T)] in addition to density functional theory (DFT) as well as second order Møller-Plesset perturbation theory (MP2). The set of predicted compounds is found to be endergonic in nature, having high positive free energy change suggesting the thermochemical stability of the compounds except for the 2B Ng-release paths. Though thermodynamically feasible, they are kinetically protected with very high activation free energy barriers. Interestingly, the release of Ng from the parent moiety XNgNSi produces the XSiN isomer, by 180° flipping of the NSi moiety. This can also be seen in the dynamical simulation carried out with the help of atom-centered density matrix propagation (ADMP) technique at 2000K for 1 ps. The bonding in Ng-C, Ng-F, and Ng-N bonds of the studied compounds is analyzed and described with the aid of natural bond orbital (NBO), topological parameters computed using atoms-in-molecules theory (AIM), energy decomposition analysis (EDA), and adaptive natural density partitioning (AdNDP) methods. The natural charge distribution on the constituent atoms suggests that the compounds can be partitioned into both ways of representations, viz., neutral radical as well as ionic fragments. Lastly, the reactivity of the compounds is scrutinized using certain reactivity descriptors calculated within the domain of conceptual density functional theory (CDFT).
Collapse
Affiliation(s)
- Gourhari Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Ranita Pal
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.,Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
3
|
Liu YT, Li AY. Long-bonding and bonding nature in noble gas insertion compounds MNgBY of transition metal-boron bond. J Mol Model 2021; 27:360. [PMID: 34817695 DOI: 10.1007/s00894-021-04970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022]
Abstract
The nature of inert gas bonding has always been an important topic. The bonds of noble gases cover the entire range of chemical bonds, from the weakest van der Waals forces, to non-covalent interactions, and to covalent bonds. Two types of methods were used to investigate the properties of chemical bonds in the inert gas inserted compound MNgBY with the transition metal M = Cu/Ag/Au and substituents Y = O/S/NH, one based on orbital analysis and the other based on electron density analysis. The NBO/NRT analysis shows that in these compounds there exists long-bonding striding the noble gas between the transitional metal and boron, similar to the noble gas insertion compounds HNgX of hydrohalide, and so a three-center four-electron bond exists among the M-Ng-B part. The electron density analyses show that the M-Ng bond between the metal Cu/Ag/Au and noble gas and the Ng-B bond in the Cu/Ag compounds are partial covalent but the Ng-B bond in Au compounds is a typical covalent bond. The large relativistic effects of Au cause the bonds in Au compounds shorter and stronger than the bonds in Ag/Cu compounds. The properties of the M-Ng and Ng-B bonds are not affected by substituents Y, but the bond lengths are sensitive to substituents.
Collapse
Affiliation(s)
- Yan Tao Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
4
|
Gao K, Zhao R, Sheng L. A theoretical study on novel neutral noble gas compound F 4XeOsF 4. Phys Chem Chem Phys 2021; 23:9585-9593. [PMID: 33885059 DOI: 10.1039/d0cp06450e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A noble gas compound containing a triple bond between xenon and transition metal Os (i.e. F4XeOsF4, isomer A) was predicted using quantum-chemical calculations. At the MP2 level of theory, the predicted Xe-Os bond length (2.407 Å) is between the standard double (2.51 Å) and triple (2.31 Å) bond lengths. Natural bond orbital analysis indicates that the Xe-Os triple bond consists of one σ-bond and two π-bonds, a conclusion also supported by atoms in molecules (AIM) quantum theory, the electron density distribution (EDD) and electron localization function (ELF) analysis. The two-body (XeF4 and OsF4) dissociation energy barrier of F4XeOsF4 is 15.6 kcal mol-1. The other three isomers of F4XeOsF4 were also investigated; isomer B contains a Xe-Os single bond and isomers C and D contain Xe-Os double bonds. The configurations of isomers A, B, C and D can be transformed into each other.
Collapse
Affiliation(s)
- Kunqi Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | | | | |
Collapse
|
5
|
Zhang G, Su Y, Zou X, Fu L, Song J, Chen D, Sun C. Charge-Shift Bonding in Xenon Hydrides: An NBO/NRT Investigation on HXeY···HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CCH, CN) via H-Xe Blue-Shift Phenomena. Front Chem 2020; 8:277. [PMID: 32391318 PMCID: PMC7191121 DOI: 10.3389/fchem.2020.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
Noble-gas bonding represents curiosity. Some xenon hydrides, such as HXeY (Y = Cl, Br, I) and their hydrogen-bonded complexes HXeY···HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CN, CCH), have been identified in matrixes by observing H-Xe frequencies or its monomer-to-complex blue shifts. However, the H-Xe bonding in HXeY is not yet completely understood. Previous theoretical studies provide two answers. The first one holds that it is a classical covalent bond, based on a single ionic structure H-Xe+ Y-. The second one holds that it is resonance bonding between H-Xe+ Y- and H- Xe+-Y. This study investigates the H-Xe bonding, via unusual blue-shifted phenomena, combined with some NBO/NRT calculations for chosen hydrogen-bonded complexes HXeY···HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CN, CCH). This study provides new insights into the H-Xe bonding in HXeY. The H-Xe bond in HXeY is not a classical covalent bond. It is a charge-shift (CS) bond, a new class of electron-pair bonds, which is proposed by Shaik and Hiberty et al. The unusual blue shift in studied hydrogen-bonded complexes is its H-Xe CS bonding character in IR spectroscopy. It is expected that these studies on the H-Xe bonding and its IR spectroscopic property might assist the chemical community in accepting this new-class electron-pair bond concept.
Collapse
Affiliation(s)
- Guiqiu Zhang
- Key Laboratory of Molecular and Nano Probes, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Ministry of Education, Shandong Normal University, Jinan, China
| | | | | | | | | | | | - Chuanzhi Sun
- Key Laboratory of Molecular and Nano Probes, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Ministry of Education, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Das B, Chakraborty A, Chakraborty S. Experimental and theoretical investigation of ground state intramolecular proton transfer (GSIPT) in salicylideneaniline Schiff base derivatives in polar protic medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117443. [PMID: 31677426 DOI: 10.1016/j.saa.2019.117443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Ground state intramolecular proton transfer process has been comprehensively investigated in three salicylideneaniline Schiff base derivatives (SB1, SB2, and SB3) using experimental and theoretical methods. It has been confirmed that all the three Schiff base molecules in the ground electronic state exist in the enol form in non-polar and polar aprotic solvents. Keto form is being populated by the polar protic solvent through ground state intramolecular proton transfer (GSIPT) process. Ground state equilibrium between the enol and keto tautomers for SB1 and SB3 is mainly governed by the proton donating ability of the solvent. Ground state equilibria between the enol and keto tautomers of SB2 which is a positional isomer of SB3 is governed by the polarity and proton donating ability of the solvents. Excited state intramolecular proton transfer (ESIPT) process is also evidenced in all the three Schiff base molecules. Theoretical calculations at the B3LYP/cc-pVDZ level in the gas phase and in different solvents using polarisable continuum model (PCM) have failed to establish the GSIPT process. Microsolvation of individual enol and keto conformers has been investigated considering upto three solvent molecules. The energetics of the individual conformers together with the corresponding transition state have been calculated. It has been confirmed that the keto conformer is more stable compared to the enol conformer in microsolvated cluster of three methanol molecules. Lowering of activation energy for the enol to keto tautomerisation in the presence of methanol also supports the experimental observation for GSIPT process. TDDFT/B3LYP/cc-pVDZ single point calculations for microsolvated clusters of enol and keto form of the Schiff base molecules exhibit an excellent agreement with the experimentally obtained absorption spectra. Difference in spectral nature of the Schiff base molecules has been explained using natural bond orbital (NBO) analysis. Quantum theory of atoms in molecules (QTAIM) has also been utilised to understand the GSIPT process in detail.
Collapse
Affiliation(s)
- Bijoya Das
- Department of Chemistry, Birla Institute of Technology and Science, Pilani. Pilani Campus, Vidya Vihar, Pilani, Rajasthan - 333031, India
| | - Amrita Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science, Pilani. Pilani Campus, Vidya Vihar, Pilani, Rajasthan - 333031, India
| | - Shamik Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science, Pilani. Pilani Campus, Vidya Vihar, Pilani, Rajasthan - 333031, India.
| |
Collapse
|
7
|
Wen M, Li ZZ, Li AY. OBCN isomerization and noble gas insertion compounds of identical valence electron number species: stability and bonding. Phys Chem Chem Phys 2019; 21:26311-26323. [PMID: 31781710 DOI: 10.1039/c9cp04980k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new noble gas (Ng) insertion compounds of the general type XNgX, XNgY and XNgY+ has been theoretically studied using ab initio and DFT methods herein. We first studied the isomerization process of the OBCN compound, and then investigated the bonding properties and stability of the compounds formed by inserting Ng into the single bond of the three low energy isomers by high-level ab initio calculations. The OBNgCN compounds are thermochemically stable with respect to all dissociation channels except for the processes of releasing OBCN/OBNC and free Ng. Furthermore, the two dissociation processes OBNgCN → Ng + OBNC and OBNgNC → Ng + OBCN are kinetically prohibited by the relatively high free energy barrier ranging from 22.7 to 31.7 kcal mol-1 except for the OBKrCN and OBKrNC analogues. And the adaptive natural density partitioning (AdNDP) analysis indicated that chemical bonding in OBNgCN compounds is realized via a delocalized 3-center 2-electron (3c-2e) σ-bond in the B-Ng-C moiety and a totally delocalized 5-center 2-electron (5c-2e) σ-bond in the whole O-B-Ng-C-N. Natural bond orbital (NBO) theory, atoms-in-molecules (AIM) and energy decomposition analysis (EDA) based on the molecular wavefunction revealed that the B-Ng bond and Ng-C bond have some covalent character in OBNgCN. In addition, the calculation and detailed bonding analysis on a large number of neutral and monocationic compounds with identical valence electron numbers to OBNgCN demonstrate that the two bonds directly linked to the Ng atoms have covalent properties in neutral compounds, whereas Ng forms one typical covalent bond and one partial covalent and partial ionic bond with the neighboring atoms in the monocationic compounds.
Collapse
Affiliation(s)
- Mei Wen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | |
Collapse
|
8
|
How do halogen atoms affect Xe-Mo double bond? A theoretical study of X2XeMoY2 (X = F, Cl, Br; Y = F, Cl, Br). COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Chang XT, Li Y, Liu JY, Ma HD, Wu D. Noble gas insertion compounds of hydrogenated and lithiated hyperhalogens. Phys Chem Chem Phys 2019; 21:20156-20165. [PMID: 31483426 DOI: 10.1039/c9cp01284b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on density functional theory (DFT) calculations, hydrogenated hyperhalogen HM(BO2)2, lithiated hyperhalogen LiM(BO2)2 (M = Cu, Ag, Au), and their compounds with xenon were studied. Different insertion sites of Xe resulted in various isomers. According to the natural population analysis, the Xe atom donated 0.12-0.77 electrons to HM(BO2)2 and 0.14-0.41 electrons to LiM(BO2)2 when they combined, leading to metastable charge-transfer compounds in most cases. The nature of bonding between xenon and HM(BO2)2/LiM(BO2)2 was found to be related to its location. Covalent bonds were formed when Xe bound with hydrogen atoms, as indicated by the large Wiberg bond indices of the Xe-H bonds. The same was true for most Xe-M bondings. When an Xe-O connection was formed, it was either an ionic or van der Waals force in nature depending on the specific structural feature of the isomer. A parallel study on hyperhalogen-supported Ar and Kr compounds indicated that they were not very stable and were less likely to exist at room temperature, which was in accordance with the high inertness of both Ar and Kr atoms.
Collapse
Affiliation(s)
- Xiao-Ting Chang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | | | | | | | | |
Collapse
|
10
|
Saha R, Jana G, Pan S, Merino G, Chattaraj PK. How Far Can One Push the Noble Gases Towards Bonding?: A Personal Account. Molecules 2019; 24:E2933. [PMID: 31412650 PMCID: PMC6719121 DOI: 10.3390/molecules24162933] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/29/2023] Open
Abstract
Noble gases (Ngs) are the least reactive elements in the periodic table towards chemical bond formation when compared with other elements because of their completely filled valence electronic configuration. Very often, extreme conditions like low temperatures, high pressures and very reactive reagents are required for them to form meaningful chemical bonds with other elements. In this personal account, we summarize our works to date on Ng complexes where we attempted to theoretically predict viable Ng complexes having strong bonding to synthesize them under close to ambient conditions. Our works cover three different types of Ng complexes, viz., non-insertion of NgXY type, insertion of XNgY type and Ng encapsulated cage complexes where X and Y can represent any atom or group of atoms. While the first category of Ng complexes can be thermochemically stable at a certain temperature depending on the strength of the Ng-X bond, the latter two categories are kinetically stable, and therefore, their viability and the corresponding conditions depend on the size of the activation barrier associated with the release of Ng atom(s). Our major focus was devoted to understand the bonding situation in these complexes by employing the available state-of-the-art theoretic tools like natural bond orbital, electron density, and energy decomposition analyses in combination with the natural orbital for chemical valence theory. Intriguingly, these three types of complexes represent three different types of bonding scenarios. In NgXY, the strength of the donor-acceptor Ng→XY interaction depends on the polarizing power of binding the X center to draw the rather rigid electron density of Ng towards itself, and sometimes involvement of such orbitals becomes large enough, particularly for heavier Ng elements, to consider them as covalent bonds. On the other hand, in most of the XNgY cases, Ng forms an electron-shared covalent bond with X while interacting electrostatically with Y representing itself as [XNg]+Y-. Nevertheless, in some of the rare cases like NCNgNSi, both the C-Ng and Ng-N bonds can be represented as electron-shared covalent bonds. On the other hand, a cage host is an excellent moiety to examine the limits that can be pushed to attain bonding between two Ng atoms (even for He) at high pressure. The confinement effect by a small cage-like B12N12 can even induce some covalent interaction within two He atoms in the He2@B12N12 complex.
Collapse
Affiliation(s)
- Ranajit Saha
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gourhari Jana
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, Mérida 97310, Yuc., Mexico.
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
11
|
Hou M, Jin K, Li Q, Liu S. Systematic study of the substitution effect on the tetrel bond between 1,4-diazabicyclo[2.2.2]octane and TH 3X. RSC Adv 2019; 9:18459-18466. [PMID: 35515262 PMCID: PMC9064731 DOI: 10.1039/c9ra03351c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
A tetrel bond was characterized in the complexes of 1,4-diazabicyclo[2.2.2]octane (DABCO) with TH3X (T = C, Si, Ge; X= -Me, -H, -OH, -NH2, -F, -Cl, -Br, -I, -CN, -NO2). DABCO engages in a weak tetrel bond with CH3X but a stronger one with SiH3X and GeH3X. SiH3X is favorable to bind with DABCO relative to GeH3X, inconsistent with the magnitude of the σ-hole on the tetrel atom. The methyl group in the tetrel donor weakens the tetrel bond but an enhancing effect is found for the other substituents, particularly -NO2. The substitution effect is also related to the nature of the tetrel atom. The halogen substitution from F to I has a weakening effect in the CH3X complex but an enhancing effect in the SiH3X complex and a negligible effect in the GeH3X complex. The above abnormal results found in these complexes can be partly attributed to the charge transfer from the lone pair on the nitrogen atom of DABCO into the anti-bonding orbital σ*(T-X) of TH3X. The stability of both SiH3X and GeH3X complexes is primarily controlled by electrostatic interactions and polarization.
Collapse
Affiliation(s)
- Mingchang Hou
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 People's Republic of China
| | - Kunyu Jin
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 People's Republic of China
| | - Shufeng Liu
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| |
Collapse
|
12
|
Jana G, Jha R, Pan S, Chattaraj PK. Microsolvation of lithium–phosphorus double helix: a DFT study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2462-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Pan S, Jana G, Merino G, Chattaraj PK. Noble-Noble Strong Union: Gold at Its Best to Make a Bond with a Noble Gas Atom. ChemistryOpen 2019; 8:173-187. [PMID: 30740292 PMCID: PMC6356865 DOI: 10.1002/open.201800257] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/25/2018] [Indexed: 11/29/2022] Open
Abstract
This Review presents the current status of the noble gas (Ng)‐noble metal chemistry, which began in 1977 with the detection of AuNe+ through mass spectroscopy and then grew from 2000 onwards; currently, the field is in a somewhat matured state. On one side, modern quantum chemistry is very effective in providing important insights into the structure, stability, and barrier for the decomposition of Ng compounds and, as a result, a plethora of viable Ng compounds have been predicted. On the other hand. experimental achievement also goes beyond microscopic detection and characterization through spectroscopic techniques and crystal structures at ambient temperature; for example, (AuXe4)2+(Sb2F11−)2 have also been obtained. The bonding between two noble elements of the periodic table can even reach the covalent limit. The relativistic effect makes gold a very special candidate to form a strong bond with Ng in comparison to copper and silver. Insertion compounds, which are metastable in nature, depending on their kinetic stability, display an even more fascinating bonding situation. The degree of covalency in Ng–M (M=noble metal) bonds of insertion compounds is far larger than that in non‐insertion compounds. In fact, in MNgCN (M=Cu, Ag, Au) molecules, the M−Ng and Ng−C bonds might be represented as classical 2c–2e σ bonds. Therefore, noble metals, particularly gold, provide the opportunity for experimental chemists to obtain sufficiently stable complexes with Ng at room temperature in order to characterize them by using experimental techniques and, with the intriguing bonding situation, to explore them with various computational tools from a theoretical perspective. This field is relatively young and, in the coming years, a lot of advancement is expected experimentally as well as theoretically.
Collapse
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Gourhari Jana
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Gabriel Merino
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73 Cordemex 97310 Mérida, Yuc. México
| | - Pratim K Chattaraj
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur Kharagpur 721302 India.,Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
14
|
Jana G, Pan S, Merino G, Chattaraj PK. Noble Gas Inserted Metal Acetylides (Metal = Cu, Ag, Au). J Phys Chem A 2018; 122:7391-7401. [DOI: 10.1021/acs.jpca.8b05404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gourhari Jana
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México
| | - Pratim K. Chattaraj
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
15
|
Ghosh A, Gupta A, Gupta R, Ghanty TK. Noble gas hydrides in the triplet state: HNgCCO + (Ng = He, Ne, Ar, Kr, and Xe). Phys Chem Chem Phys 2018; 20:20270-20279. [PMID: 30039141 DOI: 10.1039/c8cp03516d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the very recent investigations of neutral noble gas compounds in the open-shell configuration, we explored a new series of noble gas hydrides in the triplet state. The possible existence of noble gas-inserted ketenyl cations, HNgCCO+ (Ng = He, Ne, Ar, Kr, and Xe), in their triplet electronic state has been predicted by various ab initio quantum chemical techniques. Density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), and coupled-cluster theory (CCSD(T)) based methods have been employed to investigate the structures, energetics, harmonic vibrational frequencies, and charge distribution analysis of these ions. The aforementioned ions have been found to be thermodynamically stable with respect to all plausible 2-body and 3-body dissociation channels, except the 2-body dissociation pathway leading to the formation of global minima products (Ng + HCCO+). Nevertheless, each of the predicted HNgCCO+ ions is connected to the global minima products through a transition state with a finite barrier height on the potential energy surface, which confirms the kinetic stability of the metastable species. Detailed analysis of the optimized structural parameters, energetics, and harmonic vibrational frequencies of the predicted species clearly indicated that a strong covalent bond exists between H and Ng atoms, while a comparatively weak interaction is found between Ng and C atoms. Moreover, charge distribution and atoms-in-molecules (AIM) analysis strongly concurred with the above inferences and also suggested that the predicted metastable ions should exist essentially in the form of [HNg]+[CCO] complex. These results ultimately indicate that these predicted species may be prepared and characterized by suitable experimental technique(s) under a cryogenic environment.
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | | | |
Collapse
|
16
|
Jana G, Pan S, Osorio E, Zhao L, Merino G, Chattaraj PK. Cyanide-isocyanide isomerization: stability and bonding in noble gas inserted metal cyanides (metal = Cu, Ag, Au). Phys Chem Chem Phys 2018; 20:18491-18502. [PMID: 29947384 DOI: 10.1039/c8cp02837k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The internal isomerization, MNC ↔ MCN (M = Cu, Ag, Au), is investigated through quantum chemical computations. CuNC and AgNC are shown to be neither thermochemically nor kinetically stable against transformation to MCN. The free energy barrier (ΔG‡) for AuNC is somewhat considerable (7.1 kcal mol-1), indicating its viability, particularly at low temperature. Further, the Ng inserted analogues, MNgCN (M = Cu, Ag, Au; Ng = Xe, Rn) turn out to be thermochemically stable with respect to all possible dissociation channels but for two two-body dissociation channels, viz., MNgCN → Ng + MCN and MNgCN → Ng + MNC, which are connected to the internal isomerization processes, MNgCN → NgMCN and MNgCN → NgMNC, respectively. However, they are kinetically protected by substantial ΔG‡ values (11.8-15.4 kcal mol-1 for Cu, 9.8-13.6 kcal mol-1 for Ag, and 19.7-24.7 kcal mol-1 for Au). The pathways for such internal conversion are explored in detail. A thorough inspection of the bonding situation of the studied molecules, employing natural bond order, electron density, adaptive natural density partitioning, and energy decomposition analyses indicates that the M-Ng bonds in MNgCN and Ng-C bonds in AuNgCN can be represented as an electron-shared covalent bond. For the other Ng-C bonds, although an ionic description is better suited, the degree of covalent character is also substantial therein.
Collapse
Affiliation(s)
- Gourhari Jana
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | | | | | | | | | | |
Collapse
|
17
|
Pan S, Kar S, Saha R, Osorio E, Zarate X, Zhao L, Merino G, Chattaraj PK. Boron Nanowheels with Axles Containing Noble Gas Atoms: Viable Noble Gas Bound M©B 10- Clusters (M=Nb, Ta). Chemistry 2018; 24:3590-3598. [PMID: 29226483 DOI: 10.1002/chem.201705790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/08/2022]
Abstract
The viability of noble gas axled boron nanowheels Ngn M©B10- (Ng=Ar-Rn; M=Nb, Ta; n=1, 2) is explored by ab initio computations. In the resulting Ng2 -M complexes, the Ng-M-Ng nanorod passes through the center of the B10- ring, providing them with an inverse sandwich-like structure. While in the singly Ng bound analogue, the Ng binding enthalpy Hb at 298 K ranges from 2.5 to 10.6 kcal mol-1 , in doubly Ng bound cases it becomes very low for the Ng2 M©B10- →Ng+NgM©B10- dissociation channel, except for the case of Rn, for which the corresponding Hb values are 3.4 (Nb) and 4.0 kcal mol-1 (Ta). For a given Ng, Ta has slightly higher Ng-binding ability than Nb. The corresponding free-energy changes indicate that these systems, particularly the Xe and Rn complexes, are good candidates for experimental realization in a low-temperature matrix. The Ng-M bonds were found to be covalent in nature, as reflected in their large Wiberg bond indices, formation of a 2c-2e σ orbital between Ng and M centers in natural bond orbital and adaptive natural density partitioning (AdNDP) analyses, and the short Ng-M distances. Energy decomposition analysis and a study on the natural orbitals for chemical valence show that the Ng-M contact is supported mainly by the orbital and electrostatic interactions, with almost equal contributions. Although both the Ng→M σ donation and Ng←M π backdonation play roles in the origin of orbital interaction, the former is significantly dominant over the latter. Further, AdNDP analysis indicates that the doubly aromatic character (both σ and π) in MB10- clusters is not perturbed by the interaction with Ng atoms.
Collapse
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Susmita Kar
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, 721302, India
| | - Ranajit Saha
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, 721302, India
| | - Edison Osorio
- Departamento de Ciencias Básicas, Universidad Católica Luis Amigó, SISCO, Transversal 51A, #67B 90, Medellín, Colombia
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México
| | - Pratim K Chattaraj
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, 721302, India
| |
Collapse
|
18
|
Pan S, Jana G, Ravell E, Zarate X, Osorio E, Merino G, Chattaraj PK. Stable NCNgNSi (Ng=Kr, Xe, Rn) Compounds with Covalently Bound C-Ng-N Unit: Possible Isomerization of NCNSi through the Release of the Noble Gas Atom. Chemistry 2018; 24:2879-2887. [PMID: 29194873 DOI: 10.1002/chem.201705112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 11/07/2022]
Abstract
Although the noble gas (Ng) compounds with either Ng-C or Ng-N bonds have been reported in the literature, compounds containing both bonds are not known. The first set of systems having a C-Ng-N bonding unit is predicted herein through the analysis of stability and bonding in the NCNgNSi (Ng=Kr-Rn) family. While the Xe and Rn inserted analogues are thermochemically stable with respect to all dissociation channels, but for the one producing CNSiN and free Ng, NCKrNSi has another additional three-body dissociation channel, NCKrNSi→CN+Kr+NSi, which is exergonic by -9.8 kcal mol-1 at 298 K. This latter dissociation can be hindered by lowering the temperature. Moreover, the NCNgNSi→Ng+CNSiN dissociation is also kinetically prohibited by a quite high free energy barrier ranging from 25.2 to 39.3 kcal mol-1 , with a gradual increase in going from Kr to Rn. Therefore, these compounds are appropriate candidates for experimental realization. A detailed bonding analysis by employing natural bond orbital, electron density, energy decomposition, and adaptive natural density partitioning analyses indicates that both Ng-N and C-Ng bonds in the title compounds are covalent in nature. In fact, the latter analysis indicates the presence of delocalized 3c-3e σ-bond within the C-Ng-N moiety and a totally delocalized 5c-2e σ-bond in these compounds. This is an unprecedented bonding characteristic in the sense that the bonding pattern in Ng inserted compounds is generally represented as the presence of covalent bond in one side of Ng, and the ionic interaction in the other side. Further, the dissociation of Ng from NCNgNSi facilitates the formation of a higher energy isomer of NCNSi, CNSiN, which cannot be formed from bare NCNSi as such, because of the very high free energy barrier associated with the isomeric transformation. Therefore, in the presence of Ng atoms it might be possible to detect the high energy isomer.
Collapse
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, P. R. China
| | - Gourhari Jana
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, 721302, India
| | - Estefanía Ravell
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | - Edison Osorio
- Departamento de Ciencias Básicas, Universidad Católica Luis Amigó, SISCO, Transversal 51A #67B 90, Medellín, Colombia
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México
| | - Pratim K Chattaraj
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
19
|
Zhang J, Li W, Cheng J, Liu Z, Li Q. Cooperative effects between π-hole triel and π-hole chalcogen bonds. RSC Adv 2018; 8:26580-26588. [PMID: 35541088 PMCID: PMC9083131 DOI: 10.1039/c8ra04106g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022] Open
Abstract
MP2/aug-cc-pVTZ calculations have been performed on π-hole triel- and chalcogen-bonded complexes involving a heteroaromatic compound. These complexes are very stable with large interaction energy up to −47 kcal mol−1. The sp2-hybridized nitrogen atom engages in a stronger π-hole bond than the sp-hybridized species although the former has smaller negative electrostatic potential. The sp2-hybridized oxygen atom in 1,4-benzoquinone is a weaker electron donor in the π-hole bond than the sp2-hybridized nitrogen atom. The π-hole triel bond is stronger than the π-hole chalcogen bond. A clear structural deformation is found for the triel or chalcogen donor molecule in these π-hole-bonded complexes. The triel bond exhibits partially covalent interaction, whereas the chalcogen bond exhibits covalent interaction in the SO3 complexes of pyrazine and pyridine derivatives with a sp2-hybridized nitrogen atom. Intermolecular charge transfer (>0.2e) occurs to a considerable extent in these complexes. In ternary complexes involving an aromatic compound, wherein a triel bond and a chalcogen bond coexist, both the interactions are weakened or strengthened when the central aromatic molecule acts as a double Lewis base or plays a dual role of both a base and an acid. Both electrostatic and charge transfer effects have important contributions toward changes in the strength of both interactions. MP2/aug-cc-pVTZ calculations have been performed on π-hole triel- and chalcogen-bonded complexes involving a heteroaromatic compound. Both interactions exhibit cooperative/diminutive effect, depending on the role of the central heteroaromatic compound.![]()
Collapse
Affiliation(s)
- Jingru Zhang
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Wenzuo Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Jianbo Cheng
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Zhenbo Liu
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| |
Collapse
|