1
|
Mondal K, Rajakumar B. Experimental and Theoretical Investigation of Reactions of Formyl (HCO) Radicals in the Gas Phase: (I) Kinetics of HCO Radicals with Ethyl Formate and Ethyl Acetate in Tropospherically Relevant Conditions. J Phys Chem A 2022; 126:6135-6147. [PMID: 36054843 DOI: 10.1021/acs.jpca.2c04538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formyl (HCO) radicals were generated in situ in the gas phase via the photolysis of glyoxal in N2 at 248 nm using the pulsed laser photolysis-cavity ring-down spectrometry technique, and the absorption cross-section of the radical was measured to be σHCO = (5.3 ± 0.9) × 10-19 cm2 molecule-1 at 298 K and 615.75 nm, which was the probing wavelength. The kinetics of the reactions of HCO radicals with ethyl formate (EF) and ethyl acetate (EA) were investigated experimentally in the temperature range of 260-360 (±2) K at a pressure of 60 Torr/N2. The absolute rate coefficient for the reaction between HCO and EF was measured to be kHCO+EFExpt(298 K) = (1.39 ± 0.30) × 10-14 cm3 molecule-1 s-1 at ambient temperature, whereas that for the reaction of HCO with EA was measured tobe kHCO+EATheory(298 K) = (2.05 ± 0.43) × 10-14 cm3 molecule-1 s-1. The reaction of HCO with EA was faster than that with EF, which might be due to the greater stability of the formed radical intermediate due to hyperconjugative and inductive effects. The dependency of the measured kinetics on experimental pressures and laser fluences was examined within a certain range. To complement the experiments, kinetics of the title reactions in the temperature range of 200-400 K were deciphered theoretically via the canonical variational transition-state theory with small-curvature tunneling and interpolated single-point energy (CVT/SCT/ISPE) method using a dual-level approach at the CCSD(T)/cc-pVTZ//MP2/6-311++G(d,p) level of theory/basis set. A good degree of agreement was detected between the rate coefficients measured experimentally and those calculated theoretically both at room temperature and throughout the range of temperatures studied. The kinetic branching ratios and thermochemistry of the reactions were investigated to understand the thermodynamic feasibility and kinetic lability of each pathway throughout the studied temperatures. Atmospheric implications of these reactions of HCO radicals are also discussed.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.,Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
2
|
Xu S, Liang J, Cao S, He R, Yin G, Wang QD. A Hierarchical Theoretical Study of the Hydrogen Abstraction Reactions of H 2/C 1-C 4 Molecules by the Methyl Peroxy Radical and Implications for Kinetic Modeling. ACS OMEGA 2022; 7:8675-8685. [PMID: 35309437 PMCID: PMC8928341 DOI: 10.1021/acsomega.1c06683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The hydrogen atom abstraction by the methyl peroxy radical (CH3O2) is an important reaction class in detailed chemical kinetic modeling of the autoignition properties of hydrocarbon fuels. Systematic theoretical studies are performed on this reaction class for H2/C1-C4 fuels, which is critical in the development of a base model for large fuels. The molecules include hydrogen, alkanes, alkenes, and alkynes with a carbon number from 1 to 4. The B2PLYP-D3/cc-pVTZ level of theory is employed to optimize the geometries of all of the reactants, transition states, and products and also the treatments of hindered rotation for lower frequency modes. Accurate benchmark calculations for abstraction reactions of hydrogen, methane, and ethylene with CH3O2 are performed by using the coupled cluster method with explicit inclusion of single and double electron excitations and perturbative inclusion of triple electron excitations (CCSD(T)), the domain-based local pair-natural orbital coupled cluster method (DLPNO-CCSD(T)), and the explicitly correlated CCSD(T)-F12 method with large basis sets. Reaction rate constants are computed via conventional transition state theory with quantum tunneling corrections. The computed rate constants are compared with literature values and those employed in detailed chemical kinetic mechanisms. The calculated rate constants are implemented into the recently developed NUIGMECH1.1 base model for kinetic modeling of ignition properties.
Collapse
Affiliation(s)
- Shenying Xu
- Faculty
of Materials and Chemical Engineering, Yibin
University, Yibin, Sichuan 644000, People’s Republic of China
| | - Jinhu Liang
- Faculty
of Materials and Chemical Engineering, Yibin
University, Yibin, Sichuan 644000, People’s Republic of China
- School
of Environment and Safety Engineering, North
University of China, Taiyuan 030051, People’s Republic
of China
| | - Shutong Cao
- School
of Environment and Safety Engineering, North
University of China, Taiyuan 030051, People’s Republic
of China
| | - Ruining He
- School
of Environment and Safety Engineering, North
University of China, Taiyuan 030051, People’s Republic
of China
| | - Guoliang Yin
- Faculty
of Materials and Chemical Engineering, Yibin
University, Yibin, Sichuan 644000, People’s Republic of China
| | - Quan-De Wang
- Jiangsu
Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization,
Low Carbon Energy Institute, China University
of Mining and Technology, Xuzhou 221008, People’s Republic
of China
| |
Collapse
|
3
|
Wang R, Zhou S, Li J, Xu C, Zhang Y, Chen Z. Theoretical study on mechanism of decomposition reaction of 1,2,4-triazole derivatives. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1994666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Renyi Wang
- National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an, People’s Republic of China
| | - Suqin Zhou
- National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an, People’s Republic of China
- The Engineering & Technical College of Chengdu University of Technology, Le’shan, People’s Republic of China
| | - Jin Li
- National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an, People’s Republic of China
| | - Chenhong Xu
- National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an, People’s Republic of China
| | - YanLi Zhang
- The Engineering & Technical College of Chengdu University of Technology, Le’shan, People’s Republic of China
| | - Zi Chen
- National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an, People’s Republic of China
| |
Collapse
|
4
|
First-principle kinetic studies of unimolecular pyrolysis of isopropyl esters as biodiesel surrogates. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02800-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Li W, Li J, Ning H, Shang Y, Luo SN. Multistructural Variational Reaction Kinetics of the Simplest Unsaturated Methyl Ester: H-Abstraction from Methyl Acrylate by H, OH, CH 3, and HO 2 Radicals. J Phys Chem A 2021; 125:5103-5116. [PMID: 34082530 DOI: 10.1021/acs.jpca.1c01788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The H-abstraction reaction kinetics of methyl acrylate (MA) + H/OH/CH3/HO2 radicals have been investigated theoretically in the present work. For these reactions, the reaction energies and barrier heights are first computed using several density functionals and compared to the coupled cluster CCSD(T)-F12/jun-cc-pVTZ benchmark calculations. The M062X/maug-cc-pVTZ method shows the best performance with the smallest mean unsigned deviation (MUD) of 0.42 kcal mol-1. Combined with the electronic structure calculations using the M062X/maug-cc-pVTZ method, the multistructural canonical variational transition-state theory (MS-CVT) with small-curvature tunneling (SCT) is employed to calculate the reaction rate constants at 500-2000 K. The variational effect is between 0.56 and 1.0, the multistructural torsional anharmonicity factor ranges from 0.004 to 4.57, and the tunneling coefficient is in the range of 0.5-4.70. Notably, given the existence of reactant complexes (RCs) between reactants and transition states for the reaction systems MA + OH/HO2, we further compare the rate constants under the low-pressure limit (LPL) kinetic model, which treats the reaction as a single-step process and neglects RCs, and the pre-equilibrium model, which takes RCs into account in the reaction and treats the reaction as a two-step process. The rate constants calculated by these two models are similar within the combustion temperature range, and apparent differences occur at lower temperatures. In addition, we determine the branching ratios as a function of temperature and find that the methyl site (S3) abstractions by OH and H radicals are dominant in the low- and high-temperature ranges, respectively. Moreover, we update the kinetic model with the calculated H-abstraction rate constants to simulate the ignition delay times of MA. The simulations of the updated model are in good agreement with experimental results. The accurate reaction kinetics determined in this work are useful for the understanding and prediction of consumption branching fractions and ignition properties of the unsaturated methyl esters.
Collapse
Affiliation(s)
- Wenrui Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.,Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Hongbo Ning
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yanlei Shang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Sheng-Nian Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
6
|
Theoretical study of hydrogen abstraction from quadricyclane by small radicals. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Xiao R, Ma J, Luo Z, Zeng W, Wei Z, Spinney R, Hu WP, Dionysiou DD. Experimental and theoretical insight into hydroxyl and sulfate radicals-mediated degradation of carbamazepine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113498. [PMID: 31761579 DOI: 10.1016/j.envpol.2019.113498] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/13/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Carbamazepine (CBZ), a widely detected pharmaceutical in wastewaters, cannot currently be treated by conventional activated sludge technologies, as it is highly resistant to biodegradation. In this study, the degradation kinetics and reaction mechanisms of CBZ by hydroxyl radical (OH) and sulfate radical ()-based advanced oxidation processes (AOPs) were investigated with a combined experimental/theoretical approach. We first measured the UV absorption spectrum of CBZ and compared it to the theoretical spectrum. The agreement of two spectra reveals an extended π-conjugation system on CBZ molecular structure. The second-order rate constants of OH and with CBZ, measured by competition kinetics method, were (4.63 ± 0.01) × 109 M-1 s-1 and (8.27 ± 0.01) × 108 M-1 s-1, respectively at pH 3. The energetics of the initial steps of CBZ reaction with OH and were also calculated by density functional theory (DFT) at SMD/M05-2X/6-311++G**//M05-2X/6-31 + G**level. Our results reveal that radical addition is the dominant pathway for both OH and . Further, compared to the positive ΔGR0 value for the single electron transfer (SET) reaction pathway between CBZ and OH, the ΔGR0 value for SET reaction between CBZ and is negative, showing that this reaction route is thermodynamically favorable. Our results demonstrated the remarkable advantages of AOPs for the removal of refractory organic contaminants during wastewater treatment processes. The elucidation of the pathways for the reaction of OH and with CBZ are beneficial to predict byproducts formation and assess associated ecotoxicity, providing an evaluation mean for the feasibility of AOPs application.
Collapse
Affiliation(s)
- Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Junye Ma
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zonghao Luo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Weizhi Zeng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Engineering, Aarhus University, Hangøvej 2, DK-8200, Aarhus N, Denmark
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Wei-Ping Hu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia‒Yi, 62102, Taiwan
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
8
|
Reaction Mechanisms and Kinetics of the Hydrogen Abstraction Reactions of C₄⁻C₆ Alkenes with Hydroxyl Radical: A Theoretical Exploration. Int J Mol Sci 2019; 20:ijms20061275. [PMID: 30875716 PMCID: PMC6471405 DOI: 10.3390/ijms20061275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/24/2022] Open
Abstract
The reaction of alkenes with hydroxyl (OH) radical is of great importance to atmospheric and combustion chemistry. This work used a combined ab initio/transition state theory (TST) method to study the reaction mechanisms and kinetics for hydrogen abstraction reactions by OH radical on C4–C6 alkenes. The elementary abstraction reactions involved were divided into 10 reaction classes depending upon the type of carbon atoms in the reaction center. Geometry optimization was performed by using DFT M06-2X functional with the 6-311+G(d,p) basis set. The energies were computed at the high-level CCSD(T)/CBS level of theory. Linear correlation for the computed reaction barriers and enthalpies between M06-2X/6-311+G(d,p) and CCSD(T)/CBS methods were found. It was shown that the C=C double bond in long alkenes not only affected the related allylic reaction site, but also exhibited a large influence on the reaction sites nearby the allylic site due to steric effects. TST in conjunction with tunneling effects were employed to determine high-pressure limit rate constants of these abstraction reactions and the computed overall rate constants were compared with the available literature data.
Collapse
|
9
|
Tu Y, Wang JB, Li XY. Theoretical study of hydrogen abstraction by small radicals from cyclohexane-carbonyl-hydroperoxide. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Wu J, Ning H, Ma L, Ren W. Pressure-dependent kinetics of methyl formate reactions with OH at combustion, atmospheric and interstellar temperatures. Phys Chem Chem Phys 2018; 20:26190-26199. [DOI: 10.1039/c8cp04114h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pressure dependence occurs in bimolecular hydrogen abstraction reactions at combustion, atmospheric and interstellar temperatures.
Collapse
Affiliation(s)
- Junjun Wu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong
- New Territories
- Hong Kong
| | - Hongbo Ning
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong
- New Territories
- Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong
- New Territories
| | - Liuhao Ma
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong
- New Territories
- Hong Kong
| | - Wei Ren
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong
- New Territories
- Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong
- New Territories
| |
Collapse
|
11
|
Ning H, Liu D, Wu J, Ma L, Ren W, Farooq A. A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate. Phys Chem Chem Phys 2018; 20:21280-21285. [DOI: 10.1039/c8cp02075b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We performed ab initio calculations of the rate constants for H-abstraction reactions of phenyl formate (PF) by H/O/OH/HO2 radicals and experimentally determined the rate constants for PF + OH reactions using shock tube/laser absorption methods.
Collapse
Affiliation(s)
- Hongbo Ning
- Department of Mechanical and Automation Engineering
- The Chinese University of Hong Kong
- New Territories
- Hong Kong
- Shenzhen Research Institute
| | - Dapeng Liu
- King Abdullah University of Science and Technology
- Clean Combustion Research Center
- Physical Sciences and Engineering Division
- Thuwal 23955
- Saudi Arabia
| | - Junjun Wu
- Department of Mechanical and Automation Engineering
- The Chinese University of Hong Kong
- New Territories
- Hong Kong
- Shenzhen Research Institute
| | - Liuhao Ma
- Department of Mechanical and Automation Engineering
- The Chinese University of Hong Kong
- New Territories
- Hong Kong
- Shenzhen Research Institute
| | - Wei Ren
- Department of Mechanical and Automation Engineering
- The Chinese University of Hong Kong
- New Territories
- Hong Kong
- Shenzhen Research Institute
| | - Aamir Farooq
- King Abdullah University of Science and Technology
- Clean Combustion Research Center
- Physical Sciences and Engineering Division
- Thuwal 23955
- Saudi Arabia
| |
Collapse
|
12
|
Ning H, Wu J, Ma L, Ren W, Davidson DF, Hanson RK. Combined Ab Initio, Kinetic Modeling, and Shock Tube Study of the Thermal Decomposition of Ethyl Formate. J Phys Chem A 2017; 121:6568-6579. [PMID: 28792750 DOI: 10.1021/acs.jpca.7b05382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential energy surfaces (PESs) and reaction rate constants of the unimolecular decomposition of ethyl formate (EF) were investigated using high-precision theoretical methods at the CCSD(T)/CBS(T-Q)//M06-2X/6-311++G(d,p) level of theory. The calculated PESs of EF dissociation and molecular decomposition reactions indicate that the intramolecular H-shift to produce formic acid and ethylene is the dominant decomposition pathway. A detailed chemical kinetic mechanism for EF pyrolysis was constructed by incorporating the important reactions of EF and its radicals into an existing mechanism previously developed for small methyl esters. The updated mechanism was first used to reproduce CO, CO2, and H2O concentration time histories during EF pyrolysis in the shock tube reported by Ren et al. [ Ren , W. , Mitchell Spearrin , R. , Davidson , D. F. , and Hanson , R. K. J. Phys. Chem. A 2014 , 118 , 1785 - 1798 ]. The rate of production and sensitivity analyses show that the competing dehydration and decarboxylation channels of the intermediate formic acid control the final product yields of EF pyrolysis. The EF mechanism was further validated against the shock tube data of OH, CO, CO2, and H2O time histories measured during EF oxidation (equivalence ratio Φ = 1.0) at 1331-1615 K and 1.52-1.74 atm. This revised EF mechanism captured all of the species' time histories over the entire temperature range. Such modeling capability was due to the more accurate rate constants of EF reactions determined by high-precision theoretical calculations and a high-fidelity C0-C2 basis mechanism.
Collapse
Affiliation(s)
- Hongbo Ning
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong , New Territories, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong , New Territories, Hong Kong
| | - Junjun Wu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong , New Territories, Hong Kong
| | - Liuhao Ma
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong , New Territories, Hong Kong
| | - Wei Ren
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong , New Territories, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong , New Territories, Hong Kong
| | - David F Davidson
- Department of Mechanical Engineering, Stanford University , Stanford, California 94305, United States
| | - Ronald K Hanson
- Department of Mechanical Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|