1
|
Turner AM, Marks JH, Lechner JT, Klapötke TM, Sun R, Kaiser RI. Ultraviolet-Initiated Decomposition of Solid 1,1-Diamino-2,2-dinitroethylene (FOX-7). J Phys Chem A 2023; 127:7707-7717. [PMID: 37682229 DOI: 10.1021/acs.jpca.3c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
FOX-7 (1,1-diamino-2,2-dinitroethylene) was photolyzed with 202 nm photons to probe reaction energies, leading to the decomposition of this energetic material and to compare results from irradiations using lower-energy 532 and 355 nm photons as well as higher-energy electrons. The photolysis occurred at 5 K to suppress thermal reactions, and the solid samples were monitored using Fourier transform infrared spectroscopy (FTIR), which observed carbon dioxide (CO2), carbon monoxide (CO), cyanide (CN-), and cyanate (OCN-) after irradiation. During warming to 300 K, subliming products were detected using electron-impact quadrupole mass spectrometry (EI-QMS) and photoionization time-of-flight mass spectrometry (PI-ReTOF-MS). Five products were observed in QMS: water (H2O), carbon monoxide (CO), nitric oxide (NO), carbon dioxide (CO2), and cyanogen (NCCN). The ReTOF-MS results showed overlap with electron irradiation products but also included three intermediates for the oxidation of ammonia and nitric oxide: hydroxylamine (NH2OH), nitrosamine (NH2NO), and the largest product at 76 amu with the proposed assignment of hydroxyurea (NH2C(O)NHOH). These results highlight the role of reactive oxygen intermediates and nitro-to-nitrite isomerization as key early reactions that lead to a diverse array of decomposition products.
Collapse
Affiliation(s)
- Andrew M Turner
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Jasmin T Lechner
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| |
Collapse
|
2
|
Dilena G, Pistillo S, Bodo E. About the Formation of NH2OH+ from Gas Phase Reactions under Astrochemical Conditions. Molecules 2023; 28:molecules28072932. [PMID: 37049694 PMCID: PMC10096285 DOI: 10.3390/molecules28072932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
We present here an analysis of several possible reactive pathways toward the formation of hydroxylamine under astrochemical conditions. The analysis is based on ab initio quantum chemistry calculations. Twenty-one bimolecular ion–molecule reactions have been studied and their thermodynamics presented. Only one of these reactions is a viable direct route to hydroxylamine. We conclude that the contribution of gas-phase chemistry to hydroxylamine formation is probably negligible when compared to its formation via surface grain chemistry. However, we have found several plausible gas-phase reactions whose outcome is the hydroxylamine cation.
Collapse
|
3
|
Li X, Lu B, Jiang J, Wang L, Trabelsi T, Francisco JS, Fang W, Zhou M, Zeng X. Water Complex of Imidogen. J Am Chem Soc 2023; 145:1982-1987. [PMID: 36633923 DOI: 10.1021/jacs.2c12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Imidogen (NH) is the simplest nitrogen hydride that plays an important role in combustion and interstellar chemistry, and its combination with H2O is the prototypical amidation reaction of O-H bonds involving a nitrene intermediate. Herein, we report the observation of the elusive water complex of NH, a prereaction complex associated with the amidation reaction in a solid N2 matrix at 10 K. The hydrogen-bonded structure of NH···OH2 (versus HN···HOH) is confirmed via IR spectroscopy with comprehensive isotope labeling (D, 18O, and 15N) and quantum chemical calculations at the UCCSD(T)/aug-cc-pVQZ level of theory. In line with the observed absorption at 350 nm, irradiation of the complex at 365 nm leads to O-H bond insertion, yielding hydroxylamine NH2OH.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Tarek Trabelsi
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph S Francisco
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Wei Fang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, 200433 Shanghai, China
| |
Collapse
|
4
|
Temperature and bulk ice water effect in the methanimine formation mechanism: theoretical study. Struct Chem 2022. [DOI: 10.1007/s11224-022-02078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Bazsó G, Csonka IP, Góbi S, Tarczay G. VIZSLA-Versatile Ice Zigzag Sublimation Setup for Laboratory Astrochemistry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:124104. [PMID: 34972403 DOI: 10.1063/5.0061762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
In this article, a new multi-functional high-vacuum astrophysical ice setup, VIZSLA (Versatile Ice Zigzag Sublimation Setup for Laboratory Astrochemistry), is introduced. The instrument allows for the investigation of astrophysical processes both in a low-temperature para-H2 matrix and in astrophysical analog ices. In the para-H2 matrix, the reaction of astrochemical molecules with H atoms and H+ ions can be studied effectively. For the investigation of astrophysical analog ices, the setup is equipped with various irradiation and particle sources: an electron gun for modeling cosmic rays, an H atom beam source, a microwave H atom lamp for generating H Lyman-α radiation, and a tunable (213-2800 nm) laser source. For analysis, an FT-IR (and a UV-visible) spectrometer and a quadrupole mass analyzer are available. The setup has two cryostats, offering novel features for analysis. Upon the so-called temperature-programmed desorption (TPD), the molecules, desorbing from the substrate of the first cryogenic head, can be mixed with Ar and can be deposited onto the substrate of the other cryogenic head. The efficiency of the redeposition was measured to be between 8% and 20% depending on the sample and the redeposition conditions. The well-resolved spectrum of the molecules isolated in an Ar matrix serves a unique opportunity to identify the desorbing products of a processed ice. Some examples are provided to show how the para-H2 matrix experiments and the TPD-matrix-isolation recondensation experiments can help understand astrophysically important chemical processes at low temperatures. It is also discussed how these experiments can complement the studies carried out by using similar astrophysical ice setups.
Collapse
Affiliation(s)
- Gábor Bazsó
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - István Pál Csonka
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| | - Sándor Góbi
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| | - György Tarczay
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| |
Collapse
|
6
|
Ramakrishnan S, Sagi R, Akerman M, Asscher M. Same-Energy UV Photons and Low-Energy Electrons Activating Methane and Ammonia Frozen in Amorphous Solid Water. J Phys Chem A 2021; 125:3432-3443. [PMID: 33871255 DOI: 10.1021/acs.jpca.1c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV photons and low-energy electrons play an important role in the evolution of various molecules in the interstellar medium (ISM). Here, we examined the product molecule formation as a result of irradiation of 193 nm photons and 6.4 eV electrons (same energy under identical laboratory conditions) on D2O|CH4 + ND3|D2O sandwiched films deposited on Ru(0001) substrate at 25 K in ultrahigh vacuum as a model for processes in the ISM. Temperature-programmed desorption spectra performed following the irradiation revealed the signature of hydrazine and formamide product molecules. These molecules were, however, formed exclusively following the photons' irradiation. These results were compared with the products obtained from a D2O|CH4|D2O sample without ammonia, where deuterated formaldehyde was the dominant product, formed also by photons only. Our results indicate that the photon-induced activation of the cofrozen molecules within D2O occurs via direct (partial) dissociation of the host and embedded molecules, followed by sample annealing. The electron-induced activation occurs through a direct dissociative electron attachment mechanism. The results presented here suggest possible pathways to generate various C-N, C-O, C-C, N-O, and N-H bonds containing molecules in the ISM.
Collapse
Affiliation(s)
- Sujith Ramakrishnan
- Institute of Chemistry, Edmond J. Safra Campus, Givat-Ram The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Roey Sagi
- Institute of Chemistry, Edmond J. Safra Campus, Givat-Ram The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Michelle Akerman
- Institute of Chemistry, Edmond J. Safra Campus, Givat-Ram The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Micha Asscher
- Institute of Chemistry, Edmond J. Safra Campus, Givat-Ram The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Sanz-Novo M, León I, Alonso JL, Largo A, Barrientos C. Formation of interstellar cyanoacetamide: a rotational and computational study. ASTRONOMY AND ASTROPHYSICS 2020; 644:A3. [PMID: 33594291 PMCID: PMC7116755 DOI: 10.1051/0004-6361/202038766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Cyanoacetamide is a -CN bearing molecule that is also an amide derivative target molecule in the interstellar medium. AIMS The aim of our investigation is to analyze the feasibility of a plausible formation process of protonated cyanoacetamide under interstellar conditions and to provide direct experimental frequencies of the ground vibrational state of the neutral form in the microwave region in order to enable its eventual identification in the interstellar medium. METHODS We used high-level theoretical computations to study the formation process of protonated cyanoacetamide. Furthermore, we employed a high-resolution laser-ablation molecular beam Fourier transform spectroscopic technique to measure the frequencies of the neutral form. RESULTS We report the first rotational characterization of cyanoacetamide, and a precise set of the relevant rotational spectroscopic constants have been determined as a first step to identifying the molecule in the interstellar medium. We fully explored the potential energy surface to study a gas-phase reaction on the formation process of protonated cyanoacetamide. We found that an exothermic process with no net activation barrier is initiated by the high-energy isomer of protonated hydroxylamine, which leads to protonated cyanoacetamide.
Collapse
Affiliation(s)
- M Sanz-Novo
- Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopía y Bioespectroscopía, Parque Científico UVa, Unidad Asociada CSIC, 47011 Valladolid, Spain
- Computational Chemistry Group, Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| | - I León
- Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopía y Bioespectroscopía, Parque Científico UVa, Unidad Asociada CSIC, 47011 Valladolid, Spain
| | - J L Alonso
- Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopía y Bioespectroscopía, Parque Científico UVa, Unidad Asociada CSIC, 47011 Valladolid, Spain
| | - A Largo
- Computational Chemistry Group, Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| | - C Barrientos
- Computational Chemistry Group, Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
8
|
Congiu E, Sow A, Nguyen T, Baouche S, Dulieu F. A new multi-beam apparatus for the study of surface chemistry routes to formation of complex organic molecules in space. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:124504. [PMID: 33379980 DOI: 10.1063/5.0018926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
A multi-beam ultra-high vacuum apparatus is presented. In this article, we describe the design and construction of a new laboratory astrophysics experiment-VErs de NoUvelles Synthèses (VENUS)-that recreates the solid-state non-energetic formation conditions of complex organic molecules in dark clouds and circumstellar environments. The novel implementation of four operational differentially pumped beam lines will be used to determine the feasibility and the rates for the various reactions that contribute to formation of molecules containing more than six atoms. Data are collected by means of Fourier transform infrared spectroscopy and quadrupole mass spectrometry. The gold-coated sample holder reaches temperatures between 7 K and 400 K. The apparatus was carefully calibrated and the acquisition system was developed to ensure that experimental parameters are recorded as accurately as possible. A great effort has been made to have the beam lines converge toward the sample. Experiments have been developed to check the beam alignment using reacting systems of neutral species (NH3 and H2CO). Preliminary original results were obtained for the {NO + H} system, which shows that chemistry occurs only in the very first outer layer of the deposited species, that is, the chemical layer and the physical layer coincide. This article illustrates the characteristics, performance, and future potential of the new apparatus in view of the forthcoming launch of the James Webb Space Telescope. We show that VENUS will have a major impact through its contributions to surface science and astrochemistry.
Collapse
Affiliation(s)
- E Congiu
- CY Cergy Paris Université, Sorbonne Université, Observatoire de Paris, PSL University, CNRS, LERMA, F-95000 Cergy, France
| | - A Sow
- CY Cergy Paris Université, Sorbonne Université, Observatoire de Paris, PSL University, CNRS, LERMA, F-95000 Cergy, France
| | - T Nguyen
- CY Cergy Paris Université, Sorbonne Université, Observatoire de Paris, PSL University, CNRS, LERMA, F-95000 Cergy, France
| | - S Baouche
- CY Cergy Paris Université, Sorbonne Université, Observatoire de Paris, PSL University, CNRS, LERMA, F-95000 Cergy, France
| | - F Dulieu
- CY Cergy Paris Université, Sorbonne Université, Observatoire de Paris, PSL University, CNRS, LERMA, F-95000 Cergy, France
| |
Collapse
|
9
|
Abplanalp MJ, Kaiser RI. On the formation of complex organic molecules in the interstellar medium: untangling the chemical complexity of carbon monoxide-hydrocarbon containing ice analogues exposed to ionizing radiation via a combined infrared and reflectron time-of-flight analysis. Phys Chem Chem Phys 2019; 21:16949-16980. [PMID: 31339133 DOI: 10.1039/c9cp01793c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, over 200 molecules have been detected in the interstellar medium (ISM), with about one third being complex organic molecules (COMs), molecules containing six or more atoms. Over the last few decades, astrophysical laboratory experiments have shown that several COMs are formed via interaction of ionizing radiation within ices deposited on interstellar dust particles at 10 K (H2O, CH3OH, CO, CO2, CH4, NH3). However, there is still a lack of understanding of the chemical complexity that is available through individual ice constituents. The present research investigates experimentally the synthesis of carbon, hydrogen, and oxygen bearing COMs from interstellar ice analogues containing carbon monoxide (CO) and methane (CH4), ethane (C2H6), ethylene (C2H4), or acetylene (C2H2) exposed to ionizing radiation. Utilizing online and in situ techniques, such as infrared spectroscopy and tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), specific isomers produced could be characterized. A total of 12 chemically different groups were detected corresponding to C2HnO (n = 2, 4, 6), C3HnO (n = 2, 4, 6, 8), C4HnO (n = 4, 6, 8, 10), C5HnO (n = 4, 6, 8, 10), C6HnO (n = 4, 6, 8, 10, 12, 14), C2HnO2 (n = 2, 4), C3HnO2 (n = 4, 6, 8), C4HnO2 (n = 4, 6, 8, 10), C5HnO2 (n = 6, 8), C6HnO2 (n = 8, 10, 12), C4HnO3 (n = 4, 6, 8), and C5HnO3 (n = 6, 8). More than half of these isomer specifically identified molecules have been identified in the ISM, and the remaining COMs detected here can be utilized to guide future astronomical observations. Of these isomers, three groups - alcohols, aldehydes, and molecules containing two of these functional groups - displayed varying degrees of unsaturation. Also, the detection of 1-propanol, 2-propanol, 1-butanal, and 2-methyl-propanal has significant implications as the propyl and isopropyl moieties (C3H7), which have already been detected in the ISM via propyl cyanide and isopropyl cyanide, could be detected in our laboratory studies. General reaction mechanisms for their formation are also proposed, with distinct follow-up studies being imperative to elucidate the complexity of COMs synthesized in these ices.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. and Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. and Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Abplanalp MJ, Góbi S, Kaiser RI. On the formation and the isomer specific detection of methylacetylene (CH 3CCH), propene (CH 3CHCH 2), cyclopropane (c-C 3H 6), vinylacetylene (CH 2CHCCH), and 1,3-butadiene (CH 2CHCHCH 2) from interstellar methane ice analogues. Phys Chem Chem Phys 2019; 21:5378-5393. [PMID: 30221272 DOI: 10.1039/c8cp03921f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure methane (CH4) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: CnH2n+2 (n = 4-8), CnH2n (n = 3-9), CnH2n-2 (n = 3-9), CnH2n-4 (n = 4-9), and CnH2n-6 (n = 6-7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C3H4, C3H6, C4H4, and C4H6 were probed. These experiments confirmed the synthesis of methylacetylene (CH3CCH), propene (CH3CHCH2), cyclopropane (c-C3H6), vinylacetylene (CH2CHCCH), 1-butyne (HCCC2H5), 2-butyne (CH3CCCH3), 1,2-butadiene (H2CCCH(CH3)), and 1,3-butadiene (CH2CHCHCH2) with yields of 2.17 ± 0.95 × 10-4, 3.7 ± 1.5 × 10-3, 1.23 ± 0.77 × 10-4, 1.28 ± 0.65 × 10-4, 4.01 ± 1.98 × 10-5, 1.97 ± 0.98 × 10-4, 1.90 ± 0.84 × 10-5, and 1.41 ± 0.72 × 10-4 molecules eV-1, respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
11
|
Zhu C, Frigge R, Turner AM, Abplanalp MJ, Sun BJ, Chen YL, Chang AHH, Kaiser RI. A vacuum ultraviolet photoionization study on the formation of methanimine (CH 2NH) and ethylenediamine (NH 2CH 2CH 2NH 2) in low temperature interstellar model ices exposed to ionizing radiation. Phys Chem Chem Phys 2019; 21:1952-1962. [PMID: 30632569 DOI: 10.1039/c8cp06002a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Methylamine (CH3NH2) and methanimine (CH2NH) represent essential building blocks in the formation of amino acids in interstellar and cometary ices. In our study, by exploiting isomer selective detection of the reaction products via photoionization coupled with reflectron time of flight mass spectrometry (Re-TOF-MS), we elucidate the formation of methanimine and ethylenediamine (NH2CH2CH2NH2) in methylamine ices exposed to energetic electrons as a proxy for secondary electrons generated by energetic cosmic rays penetrating interstellar and cometary ices. Interestingly, the two products methanimine and ethylenediamine are isoelectronic to formaldehyde (H2CO) and ethylene glycol (HOCH2CH2OH), respectively. Their formation has been confirmed in interstellar ice analogs consisting of methanol (CH3OH) which is ioselectronic to methylamine. Both oxygen-bearing species formed in methanol have been detected in the interstellar medium (ISM), while for methanimine and ethylenediamine only methanimine has been identified so far. In comparison with the methanol ice products and our experimental findings, we predict that ethylenediamine should be detectable in these astronomical sources, where methylamine and methanimine are present.
Collapse
Affiliation(s)
- Cheng Zhu
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Góbi S, Crandall PB, Maksyutenko P, Förstel M, Kaiser RI. Accessing the Nitromethane (CH3NO2) Potential Energy Surface in Methanol (CH3OH)–Nitrogen Monoxide (NO) Ices Exposed to Ionizing Radiation: An FTIR and PI-ReTOF-MS Investigation. J Phys Chem A 2018; 122:2329-2343. [DOI: 10.1021/acs.jpca.7b12235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sándor Góbi
- Department of Chemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
- W. M. Keck Laboratory in Astrochemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Parker B. Crandall
- Department of Chemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
- W. M. Keck Laboratory in Astrochemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Pavlo Maksyutenko
- Department of Chemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
- W. M. Keck Laboratory in Astrochemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Marko Förstel
- Department of Chemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
- W. M. Keck Laboratory in Astrochemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
- W. M. Keck Laboratory in Astrochemistry, University of Hawai‘i at Ma̅noa, Honolulu, Hawaii 96822, United States
| |
Collapse
|