1
|
Zhou B, Govyadinov A, Kornilovitch P, Remcho VT. Development of Spiropyran Immobilization and Characterization Protocols for Reversible Photopatterning of SiO 2 Surfaces. ACS OMEGA 2024; 9:29401-29409. [PMID: 39005810 PMCID: PMC11238298 DOI: 10.1021/acsomega.4c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Spiropyran is a dynamic organic compound that is distinguished by its reversible conversion between two forms: the colorless closed spiropyran (SP) form and the purple open merocyanine (MC) form. Typically triggered by UV light and reversed by visible light, spiropyran-functionalized surfaces offer reversible conversion in properties including color, polarity, reactivity, and fluorescence, making them applicable to diverse applications in chemical sensors, biosensors, drug delivery, and heavy metal extraction. While spiropyran has been successfully incorporated into various material platforms with SiO2 surfaces, its application on flat surfaces has been limited due to surface area constraints and a lack of standardized evaluation methods, which largely depend on the integration approach and substrate type used. In this study, we systematically review the existing literature and categorize integration methods and substrate types first and then report on our experimental work, in which we developed a streamlined three-step immobilization protocol, which includes surface activation, amination with (3-aminopropyl) triethoxysilane (APTES), and subsequent functionalization with carboxylic spiropyran (SP-COOH). Using SiO2 surfaces as a demonstration, we have also established a robust characterization protocol, consisting of contact angle measurements, X-ray photoelectron spectroscopy (XPS), ellipsometry, and fluorometric analysis. Our results evaluate the newly developed immobilization protocol, demonstrating effective activation and optimal amination using a 2% APTES solution, achieved in 5 min at room temperature. Fluorescence imaging provided clear contrast between the SP and the MC forms. Furthermore, we discuss limitations in the surface density of functional groups and steric hindrance and propose future improvements. Our work not only underscores the versatility of spiropyran in surface patterning but also provides optimized protocols for its immobilization and characterization on SiO2 surfaces, which may be adapted for use on other substrates. These advancements lay the groundwork for on-chip sensing technologies and other applications.
Collapse
Affiliation(s)
- Bokun Zhou
- Department
of Chemistry, College of Science, Oregon
State University, Corvallis, Oregon 97331, United States
- Materials
Science Program, College of Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | | | | | - Vincent T. Remcho
- Department
of Chemistry, College of Science, Oregon
State University, Corvallis, Oregon 97331, United States
- Materials
Science Program, College of Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
2
|
Yamaguchi T, Ogawa M. Photoinduced movement: how photoirradiation induced the movements of matter. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:796-844. [PMID: 36465797 PMCID: PMC9718566 DOI: 10.1080/14686996.2022.2142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Pioneered by the success on active transport of ions across membranes in 1980 using the regulation of the binding properties of crown ethers with covalently linked photoisomerizable units, extensive studies on the movements by using varied interactions between moving objects and environments have been reported. Photoinduced movements of various objects ranging from molecules, polymers to microscopic particles were discussed from the aspects of the driving for the movements, materials design to achieve the movements and systems design to see and to utilize the movements are summarized in this review.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
3
|
Barachevsky VА. Photochromic Organo-Silica Nanoparticles. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221090346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Yamaguchi T, Imwiset KJ, Ogawa M. Efficient Negative Photochromism by the Photoinduced Migration of Photochromic Merocyanine/Spiropyran in the Solid State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3702-3708. [PMID: 33729810 DOI: 10.1021/acs.langmuir.1c00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient negative photochromism was achieved by the photoinduced migration of merocyanine in mesoporous silica to an organophilic clay as spiropyran. Depending on the nature of the organophilic clays (dioctadecyldimethylammonium and dioleyldimethylammonium clays), important differences in the negative photochromisms and the thermal coloration were observed; the dioleyldimethylammonium clay gave a higher yield (98%) and faster reaction (half-life t1/2 = 2.8 h) than the dioctadecyldimethylammonium clay (94% and t1/2 = 3.2 h) of the negative photochromism, indicating the important role of the surfactant assembly to control the molecular diffusion.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Kamonnart Jaa Imwiset
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
5
|
Phuekphong AF, Imwiset KJ, Ogawa M. Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122888. [PMID: 32937697 DOI: 10.1016/j.jhazmat.2020.122888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nanoarchitecture of hybrids materials based on clay minerals as nano building blocks for the environmental remediation is summarized with the emphasis on the utilization of layered clay minerals, especially smectite group of clay minerals, as nano building blocks for designing functional nanostructures for the adsorption of molecular contaminants from the environments. Smectites are well-known adsorbents of cationic contaminants, while surface modification of smectites with organoammonium ions has given hydrophobic and microporous characters to uptake nonionic organic contaminants from environments. Not only on the designed interactions between adsorbent-adsorbate for efficient and higher capacity adsorption, the states of the adsorbed nonionic organic compounds have been altered and varied by the modification of smectites as shown by the controlled release and specific catalytic reactions. The organically modified clays are classified from the nanoarchitecture, and the functions derived from the nanoarchitectures are discussed based on the structure-property relationship.
Collapse
Affiliation(s)
- Alisa Fern Phuekphong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Kamonnart Jaa Imwiset
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
6
|
Wu X, Xue X, Wang J, Liu H. Phototropic Aggregation and Light-Guided Long-Distance Collective Transport of Colloidal Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6819-6827. [PMID: 32476425 DOI: 10.1021/acs.langmuir.0c01244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phoretic swarming and collective transport of colloidal particles in response to environmental stimuli have attracted tremendous interest in a variety of fields. In this work, we investigate the light-actuated motion, aggregation, and light-guided long-distance mass transport of silica microspheres in simple spiropyran solutions under the illumination of UV spot sources. The phototactic motion is confirmed by the dependence of swarming on the illumination intensity and spiropyran concentrations, ON-OFF switching tests, pattern-masked UV sources, etc. The aggregates formed via swarming of silica spheres can chase after a moving UV source, however, relying on a critical speed of the UV source. Only when the UV source speed is below the critical value, the aggregates follow the UV spot at a constant relative speed to the light spot. Analysis on the shape of silica microsphere currents indicates that continuous illumination of the UV spot source and resultant chemical gradients are important for the formation of steady microsphere currents. Light-guided aggregation and long-distance mass transport are interesting for targeted delivery and remote-controlled enrichment of environmental hazards.
Collapse
Affiliation(s)
- Xiaoran Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| | - Xiang Xue
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| | - Jinghang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| | - Hewen Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Yamaguchi T, Nut Leelaphattharaphan N, Shin H, Ogawa M. Acceleration of photochromism and negative photochromism by the interactions with mesoporous silicas. Photochem Photobiol Sci 2019; 18:1742-1749. [PMID: 31093626 DOI: 10.1039/c9pp00081j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of merocyanine dye onto mesoporous silicas with varied pore sizes (5.5, 9.4 and 2.2 nm) from the toluene solution of 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran under UV irradiation was investigated quantitatively. The photoinduced adsorption of merocyanine onto SBA-15 with the pore diameter of 9.4 nm followed the pseudo-second order kinetics and the rate constant was larger than that observed for MCM-41 (pore size of 2.2 nm) owing to the efficient diffusion of merocyanine. The maximum adsorbed amounts of the merocyanine dye was 152 mg g-1 of SBA-15, which corresponded to the sufficiently high concentration of merocyanine in the pores (0.376 mol L-1 of pore). The resulting red-colored hybrids (SBA-15 containing merocyanine) showed decoloration in the solid-state by visible light irradiation (negative photochromism). The conversion was high (about 80% at the photostationary state) under visible light irradiation at room temperature using a solar simulator (100 W). The red color was re-generated by storing the photochemically formed colorless samples in the dark at room temperature. The half-lives of the thermal coloration process were 2.6, 1.9 and 1.3 h for the MCM-41, SBA-15s with the BJH pore sizes of 5.5 and 9.4 nm, respectively. Since the coloration was affected by the diffusion of the molecules in the pores, larger pores provided the efficient molecular diffusion, leading to faster reactions.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Nattapat Nut Leelaphattharaphan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Hojoon Shin
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
8
|
Teepakakorn A(P, Yamaguchi T, Ogawa M. The Improved Stability of Molecular Guests by the Confinement into Nanospaces. CHEM LETT 2019. [DOI: 10.1246/cl.181026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aranee (Pleng) Teepakakorn
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Tetsuo Yamaguchi
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
9
|
Yamaguchi T, Ogawa M. Hydrophilic Internal Pore and Hydrophobic Particle Surface of Organically Modified Mesoporous Silica Particle to Host Photochromic Molecules. CHEM LETT 2019. [DOI: 10.1246/cl.180908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tetsuo Yamaguchi
- Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
10
|
Yamaguchi T, Maity A, Polshettiwar V, Ogawa M. Negative Photochromism Based on Molecular Diffusion between Hydrophilic and Hydrophobic Particles in the Solid State. Inorg Chem 2018. [PMID: 29533063 DOI: 10.1021/acs.inorgchem.7b03132] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tetsuo Yamaguchi
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Ayan Maity
- Division of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Vivek Polshettiwar
- Division of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
11
|
Yamaguchi T, Ogawa M. Photochromism of a Spiropyran in the Presence of a Synthetic Hectorite. CHEM LETT 2018. [DOI: 10.1246/cl.170982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tetsuo Yamaguchi
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|