1
|
Chang XP, Wang JL, Peng LY, Cen XJ, Yin BW, Xie BB. Mechanistic photophysics of tellurium-substituted cytosine: Electronic structure calculations and nonadiabatic dynamics simulations. Photochem Photobiol 2024; 100:339-354. [PMID: 37435854 DOI: 10.1111/php.13835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Previously, the MS-CASPT2 method was performed to study the static and qualitative photophysics of tellurium-substituted cytosine (TeC). To get quantitative information, we used our recently developed QTMF-FSSH dynamics method to simulate the excited-state decay of TeC. The CASSCF method was adopted to reduce the calculation costs, which was confirmed to provide reliable structures and energies as those of MS-CASPT2. A detailed structural analysis showed that only 5% trajectories will hop to the lower triplet or singlet state via the twisted (S2 /S1 /T2 )T intersection, while 67% trajectories will choose the planar intersections of (S2 /S1 /T3 /T2 /T1 )P and (S2 /S1 /T2 /T1 )P but subsequently become twisted in other electronic states. By contrast, ~28% trajectories will maintain in a plane throughout dynamics. Electronic population revealed that the S2 population will ultrafast transfer to the lower triplet or singlet state. Later, the TeC system will populate in the spin-mixed electronic states composed of S1 , T1 and T2 . At the end of 300 fs, most trajectories (~74%) will decay to the ground state and only 17.4% will survive in the triplet states. Our dynamics simulation verified that tellurium substitution will enhance the intersystem crossings, but the very short triplet lifetime (ca. 125 fs) will make TeC a less effective photosensitizer.
Collapse
Affiliation(s)
- Xue-Ping Chang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xu-Jiang Cen
- Ningbo Zhongtian Engineering Co., Ltd., Ningbo, China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
2
|
Manae MA, Hazra A. Quantum effects in photosensitization: the case of singlet oxygen generation by thiothymines. Phys Chem Chem Phys 2022; 24:13266-13274. [PMID: 35604080 DOI: 10.1039/d2cp01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photosensitization is the indirect electronic excitation of a molecule with the aid of a photosensitizer and is a bimolecular nonradiative energy transfer. In this study, we have attempted to elucidate its mechanism, and we do this by calculating rate constants of photosensitization of oxygen by thiothymines (2-thiothymine, 4-thiothymine and 2,4 dithiothymine). The rate constants have been calculated using two approaches: (a) a classical limit of Fermi's Golden Rule (FGR), and (b) a time-dependent variant of FGR, where the treatment is purely quantum mechanical. The former approach has previously been developed for bimolecular systems and has been applied to the photosensitization reactions studied here. The latter approach, however, has so far only been used for unimolecular reactions, and in this work, we describe how it can be adapted for bimolecular reactions. Experimentally, all three thiothymines are known to have significant singlet oxygen yields, which are indicative of similar rates. Rate constants calculated using the time-dependent variant of FGR are similar across all three thiothymines. While the classical approximation gives reasonable rate constants for 2-thiothymine, it severely underestimates them for 4-thiothymine and 2,4 dithiothymine, by several orders of magnitude. This work indicates the importance of quantum effects in driving photosensitization.
Collapse
Affiliation(s)
- Meghna A Manae
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Anirban Hazra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| |
Collapse
|
3
|
Xie BB, Tang XF, Liu XY, Chang XP, Cui G. Mechanistic photophysics and photochemistry of unnatural bases and sunscreen molecules: insights from electronic structure calculations. Phys Chem Chem Phys 2021; 23:27124-27149. [PMID: 34849517 DOI: 10.1039/d1cp03994f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photophysics and photochemistry are basic subjects in the study of light-matter interactions and are ubiquitous in diverse fields such as biology, energy, materials, and environment. A full understanding of mechanistic photophysics and photochemistry underpins many recent advances and applications. This contribution first provides a short discussion on the theoretical calculation methods we have used in relevant studies, then we introduce our latest progress on the mechanistic photophysics and photochemistry of two classes of molecular systems, namely unnatural bases and sunscreens. For unnatural bases, we disclose the intrinsic driving forces for the ultrafast population to reactive triplet states, impacts of the position and degree of chalcogen substitutions, and the effects of complex environments. For sunscreen molecules, we reveal the photoprotection mechanisms that dissipate excess photon energy to the surroundings by ultrafast internal conversion to the ground state. Finally, relevant theoretical challenges and outlooks are discussed.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
4
|
Zhu YH, Tang XF, Chang XP, Zhang TS, Xie BB, Cui G. Mechanistic Photophysics of Tellurium-Substituted Uracils: Insights from Multistate Complete-Active-Space Second-Order Perturbation Calculations. J Phys Chem A 2021; 125:8816-8826. [PMID: 34606278 DOI: 10.1021/acs.jpca.1c06169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The photophysical mechanisms of tellurium-substituted uracils were studied at the multistate complete-active-space second-order perturbation level with a particular focus on how the position and number of tellurium substitutions affect their nonadiabatic relaxation processes. Electronic structure analysis reveals that the lowest several excited states are closely concerned with the n and π orbitals at the Te7-C2 [Te8-C4] moiety of 2-tellurouracil (2TeU) [4TeU and 24TeU]. Both planar and twisted minima were optimized for 2TeU, whereas only planar ones were obtained for 4TeU and 24TeU, except for a twisted T1 minimum of 4TeU. Based on intersection structures and linearly interpolated internal coordinate paths, we proposed several feasible excited-state deactivation paths. It is found that the relaxation channels for 2TeU are more complicated than those of 4TeU and 24TeU. The electronic population transfer to the T1 state for 2TeU is easier than that for 4TeU and 24TeU in consideration of the barrier heights from the S2 Franck-Condon point to the S2/S1 or S2/T2 intersections. In addition, the recovery of the ground state from the T1 state for 2TeU will be more efficient than that for the other two systems as well.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
5
|
Zhu YH, Zhang TS, Tang XF, Xie BB, Cui G. MS-CASPT2 studies on the mechanistic photophysics of tellurium-substituted guanine and cytosine. Phys Chem Chem Phys 2021; 23:12421-12430. [PMID: 34028476 DOI: 10.1039/d1cp01142a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur-substituted nucleobases are highly promising photosensitizers that are widely used in photodynamic therapy, and there are numerous studies exploring their unique photophysical behaviors. However, relevant photophysical investigations on selenium and tellurium substitutions are still rare. Herein, the high-level multistate complete-active-space second-order perturbation (MS-CASPT2) method was performed for the first time to explore the excited-state relaxation processes of tellurium-substituted guanine (TeG) and cytosine (TeC). Based on the electronic state properties in the Franck-Condon (FC) region, we found that the lowest five (S0, S1, S2, T1, and T2) and six (S0, S1, S2, T1, T2 and T3) states will participate in the nonadiabatic transition processes of TeG and TeC systems, respectively. In these electronic states, two kinds of minimum and intersection structures (i.e., planar and twisted structures) were obtained for both TeG and TeC systems. The linearly interpolated internal coordinate (LIIC) paths and spin-orbit coupling (SOC) constants revealed several possible planar and twisted excited-state decay channels, which could lead the systems to the lowest reactive triplet state of T1. Small energy barriers in the T1 state will trap the TeG and TeC systems for a while before they finally populate to the ground state. Although tellurium substitution would further redshift the absorption wavelength and enhance the intersystem crossing (ISC) rate to the T1 state compared with sulfur and selenium substitutions, the rapid ISC process of T1 → S0 may make it a less effective photosensitizer to sensitize the molecular oxygen. We believe our present work will provide important mechanistic insights into the photophysics of tellurium-substituted nucleobases.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
6
|
Valverde D, Mai S, Sanches de Araújo AV, Canuto S, González L, Borin AC. On the population of triplet states of 2-seleno-thymine. Phys Chem Chem Phys 2021; 23:5447-5454. [PMID: 33650609 DOI: 10.1039/d1cp00041a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The population and depopulation mechanisms leading to the lowest-lying triplet states of 2-Se-Thymine were studied at the MS-CASPT2/cc-pVDZ level of theory. Several critical points on different potential energy hypersurfaces were optimized, including minima, conical intersections, and singlet-triplet crossings. The accessibility of all relevant regions on the potential energy hypersurfaces was investigated by means of minimum energy paths and linear interpolation in internal coordinates techniques. Our analysis indicates that, after the population of the bright S2 state in the Franck-Condon region, the first photochemical event is a barrierless evolution towards one of its two minima. After that, three viable photophysical deactivation paths can take place. In one of them, the population in the S2 state is transferred to the T2 state via intersystem crossing and subsequently to the T1 state by internal conversion. Alternatively, the S1 state could be accessed by internal conversion through two distinct conical intersections with S2 state followed by singlet-triplet crossing with the T2 state. The absence of a second minimum on the T1 state and a small energy barrier on pathway along the potential energy surface towards the ground state from the lowest triplet state are attributed as potential reasons to explain why the lifetime of the triplet state of 2-Se-Thymine might be reduced in comparison with its thio-analogue.
Collapse
Affiliation(s)
- Danillo Valverde
- Institute of Physics, University of São Paulo, Rua do Matão 1371. 05508-090, São Paulo, SP, Brazil
| | - Sebastian Mai
- Photonics Institute, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria and Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | | | - Sylvio Canuto
- Institute of Physics, University of São Paulo, Rua do Matão 1371. 05508-090, São Paulo, SP, Brazil
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748. 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Fang YG, Valverde D, Mai S, Canuto S, Borin AC, Cui G, González L. Excited-State Properties and Relaxation Pathways of Selenium-Substituted Guanine Nucleobase in Aqueous Solution and DNA Duplex. J Phys Chem B 2021; 125:1778-1789. [PMID: 33570942 PMCID: PMC8023715 DOI: 10.1021/acs.jpcb.0c10855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The excited-state properties and relaxation mechanisms after light irradiation of 6-selenoguanine (6SeG) in water and in DNA have been investigated using a quantum mechanics/molecular mechanics (QM/MM) approach with the multistate complete active space second-order perturbation theory (MS-CASPT2) method. In both environments, the S1 1(nSeπ5*) and S2 1(πSeπ5*) states are predicted to be the spectroscopically dark and bright states, respectively. Two triplet states, T1 3(πSeπ5*) and T2 3(nSeπ5*), are found energetically below the S2 state. Extending the QM region to include the 6SeG-Cyt base pair slightly stabilizes the S2 state and destabilizes the S1, due to hydrogen-bonding interactions, but it does not affect the order of the states. The optimized minima, conical intersections, and singlet-triplet crossings are very similar in water and in DNA, so that the same general mechanism is found. Additionally, for each excited state geometry optimization in DNA, three kind of structures ("up", "down", and "central") are optimized which differ from each other by the orientation of the C═Se group with respect to the surrounding guanine and thymine nucleobases. After irradiation to the S2 state, 6SeG evolves to the S2 minimum, near to a S2/S1 conical intersection that allows for internal conversion to the S1 state. Linear interpolation in internal coordinates indicate that the "central" orientation is less favorable since extra energy is needed to surmount the high barrier in order to reach the S2/S1 conical intersection. From the S1 state, 6SeG can further decay to the T1 3(πSeπ5*) state via intersystem crossing, where it will be trapped due to the existence of a sizable energy barrier between the T1 minimum and the T1/S0 crossing point. Although this general S2 → T1 mechanism takes place in both media, the presence of DNA induces a steeper S2 potential energy surface, that it is expected to accelerate the S2 → S1 internal conversion.
Collapse
Affiliation(s)
- Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Danillo Valverde
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, SP 05508-090, Brazil
| | - Sebastian Mai
- Photonics Institute, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria.,Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sylvio Canuto
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, SP 05508-090, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP Brazil
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
8
|
Peng Q, Zhu YH, Zhang TS, Liu XY, Fang WH, Cui G. Selenium substitution effects on excited-state properties and photophysics of uracil: a MS-CASPT2 study. Phys Chem Chem Phys 2020; 22:12120-12128. [PMID: 32440669 DOI: 10.1039/d0cp01369b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The photophysics of selenium-substituted nucleobases has attracted recent experimental attention because they could serve as potential photosensitizers in photodynamic therapy. Herein, we present a comprehensive MS-CASPT2 study on the spectroscopic and excited-state properties, and photophysics of 2-selenouracil (2SeU), 4-selenouracil (4SeU), and 2,4-selenouracil (24SeU). Relevant minima, conical intersections, crossing points, and excited-state relaxation paths in the lowest five electronic states (i.e., S0, S1, S2, T2, and T1) are explored. On the basis of these results, their photophysical mechanisms are proposed. Upon photoirradiation to the bright S2 state, 2SeU quickly relaxes to its S2 minimum and then moves in an essentially barrierless way to a nearby S2/S1 conical intersection near which the S1 state is populated. Next, the S1 system arrives at an S1/T2/T1 intersection where a large S1/T1 spin-orbit coupling of 430.8 cm-1 makes the T1 state populated. In this state, a barrier of 6.8 kcal mol-1 will trap 2SeU for a while. In parallel, for 4SeU or 24SeU, the system first relaxes to the S2 minimum and then overcomes a small barrier to approach an S2/S1 conical intersection. Once hopping to the S1 state, there exists an extended region with very close S1, T2, and T1 energies. Similarly, a large S1/T1 spin-orbit coupling of 426.8 cm-1 drives the S1→ T1 intersystem crossing process thereby making the T1 state populated. Similarly, an energy barrier heavily suppresses electronic transition to the S0 state. The present work manifests that different selenium substitutions on uracil can lead to a certain extent of different vertical and adiabatic excitation energies, excited-state properties, and relaxation pathways. These insights could help understand the photophysics of selenium-substituted nucleobases.
Collapse
Affiliation(s)
- Qin Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | | | |
Collapse
|
9
|
Manae MA, Hazra A. Triplet Decay Dynamics in Sulfur-Substituted Thymine: How Position of Substitution Matters. J Phys Chem A 2019; 123:10862-10867. [PMID: 31790228 DOI: 10.1021/acs.jpca.9b08214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sulfur-substituted analogues of thymine are of three types depending on the position of sulfur substitution: 2-thiothymine (2tThy), 4-thothymine (4tThy), and 2,4-dithiothymine (dtThy). These molecules, on photoexcitation, are known to form in their triplet state with near unity yield. Consequently, they are able to photosensitize ground state molecular oxygen to singlet oxygen, a property which makes them potential drugs for photodynamic therapy (PDT). The singlet oxygen yield is directly correlated with the triplet lifetime of the thiothymine, which in turn is governed by its triplet decay dynamics. In this work, the dependence of the triplet decay dynamics on the position of sulfur substitution is investigated by comparatively studying all three thiothymines. The topology of the triplet potential energy surface and decay mechanism of 2tThy is found to be distinctly different from 4tThy and dtThy. The fundamental reason for this is the different electronic natures of the two C═X (X = O, S) moieties in each molecule, one of which is conjugated with a C═C bond, while the other is not. Further, it is shown that the triplet lifetime of 2tThy can be increased by manipulating the energetic ordering of its molecular orbitals with unobtrusive substitutions, thus making it a better candidate for a PDT drug.
Collapse
Affiliation(s)
- Meghna A Manae
- Department of Chemistry , Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| | - Anirban Hazra
- Department of Chemistry , Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| |
Collapse
|
10
|
Ashwood B, Pollum M, Crespo-Hernández CE. Photochemical and Photodynamical Properties of Sulfur-Substituted Nucleic Acid Bases. Photochem Photobiol 2018; 95:33-58. [PMID: 29978490 DOI: 10.1111/php.12975] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Sulfur-substituted nucleobases (a.k.a., thiobases) are among the world's leading prescriptions for chemotherapy and immunosuppression. Long-term treatment with azathioprine, 6-mercaptopurine and 6-thioguanine has been correlated with the photoinduced formation of carcinomas. Establishing an in-depth understanding of the photochemical properties of these prodrugs may provide a route to overcoming these carcinogenic side effects, or, alternatively, a basis for developing effective compounds for targeted phototherapy. In this review, a broad examination is undertaken, surveying the basic photochemical properties and excited-state dynamics of sulfur-substituted analogs of the canonical DNA and RNA nucleobases. A molecular-level understanding of how sulfur substitution so remarkably perturbs the photochemical properties of the nucleobases is presented by combining experimental results with quantum-chemical calculations. Structure-property relationships demonstrate the impact of site-specific sulfur substitution on the photochemical properties, particularly on the population of the reactive triplet state. The value of fundamental photochemical investigations for driving the development of ultraviolet-A chemotherapeutics is showcased. The most promising photodynamic agents identified thus far have been investigated in various carcinoma cell lines and shown to decrease cell proliferation upon exposure to ultraviolet-A radiation. Overarching principles have been elucidated for the impact that sulfur substitution of the carbonyl oxygen has on the photochemical properties of the nucleobases.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | - Marvin Pollum
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|