1
|
Dantus M. Tracking Molecular Fragmentation in Electron-Ionization Mass Spectrometry with Ultrafast Time Resolution. Acc Chem Res 2024; 57:845-854. [PMID: 38366970 PMCID: PMC10956387 DOI: 10.1021/acs.accounts.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
ConspectusMass spectrometry is a powerful analytical method capable of identifying compounds given a minute amount of material. The fragmentation pattern that results following molecular activation serves as a fingerprint that can be matched to a database compound for identification. Over the past half century, studies have addressed and, in many cases, named the chemical reactions that lead to some of the principal fragment ions. Theories have been developed to predict the observed fragmentation patterns, many of which assume that energy redistributes prior to dissociation. However, the existence of rearrangements and nonergodic processes complicates the prediction of fragmentation patterns and the identification of compounds that have yet to be entered into a curated database. To date, very few studies have addressed the time-dependent nature of the fragmentation of radical cations and, in particular, processes occurring with picosecond or shorter time scales where one expects to find nonergodic reactions.This Account focuses on a novel approach that enables tracking of molecular fragmentation in electron-ionization mass spectrometry with ultrafast time resolution. The two challenges that have prevented the time-resolved studies following electron ionization are the random impact parameter and moment of ionization of each molecule. In addition, medium-sized molecules can produce fragmentation patterns with tens if not hundreds of product ions. Spectroscopically interrogating all of these ions as a function of time is another major challenge. We describe strong field disruptive probing, a method that ionizes molecules on a femtosecond time scale and allows us to track in time the formation of all fragment ions simultaneously.Molecular fragmentation following ionization can occur on a very wide range of time scales. Metastable ions can survive from nanoseconds to microseconds; reactions that depend on vibrational energy redistribution can take picoseconds to nanoseconds; and direct dissociation processes and some rearrangements can take place in femtoseconds to picoseconds. All of these processes depend on the dynamics that occur during attoseconds and femtoseconds following the ionization process. Following a discussion of these time scales, we provide three examples of fragmentations that have been studied with femtosecond time resolution. Each of these examples include unforeseen reaction dynamics that involve a nonergodic process, highlighting the importance of time resolution in mass spectrometry. Finally, we explore future challenges and unresolved questions in mass spectrometry and, more broadly, in the domain of electron-initiated chemical reactions.
Collapse
Affiliation(s)
- Marcos Dantus
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Physics and Astronomy, Michigan State
University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Singh V, Cheng C, Weinacht T, Matsika S. Stable excited dication: trapping on the S 1 state of formaldehyde dication after strong field ionization. Phys Chem Chem Phys 2022; 24:20701-20708. [PMID: 35894510 DOI: 10.1039/d2cp02604j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combined theoretical and experimental work examines the dynamics of dication formaldehyde produced by strong field ionization. Trajectory surface hopping dynamics on the first several singlet electronic states of the formaldehyde dication are used to examine the relaxation pathways and dissociation channels, while kinetic energy distributions after strong field ionization of formaldehyde and deuterated formaldehyde are used to confirm the theoretical predictions. We find that the first excited state of the formaldehyde dication is stable, neither decays to the ground state nor dissociates, even though the ground state and higher lying states are directly dissociative. The stability of the first excited state is explained by its symmetry which does not allow for radiative or nonradiative transitions to the ground state and by large barriers to dissociate on the excited state surface.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Chuan Cheng
- Department of Physics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Thomas Weinacht
- Department of Physics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
3
|
López Peña HA, Shusterman JM, Ampadu Boateng D, Lao KU, Tibbetts KM. Coherent Control of Molecular Dissociation by Selective Excitation of Nuclear Wave Packets. Front Chem 2022; 10:859095. [PMID: 35449589 PMCID: PMC9016217 DOI: 10.3389/fchem.2022.859095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
We report on pump-probe control schemes to manipulate fragmentation product yields in p-nitrotoluene (PNT) cation. Strong field ionization of PNT prepares the parent cation in the ground electronic state, with coherent vibrational excitation along two normal modes: the C–C–N–O torsional mode at 80 cm−1 and the in-plane ring-stretching mode at 650 cm−1. Both vibrational wave packets are observed as oscillations in parent and fragment ion yields in the mass spectrum upon optical excitation. Excitation with 650 nm selectively fragments the PNT cation into C7H7+, whereas excitation with 400 nm selectively produces C5H5+ and C3H3+. In both cases the ion yield oscillations result from torsional wave packet excitation, but 650 and 400 nm excitation produce oscillations with opposite phases. Ab initio calculations of the ground and excited electronic potential energy surfaces of PNT cation along the C–C–N–O dihedral angle reveal that 400 nm excitation accesses an allowed transition from D0 to D6 at 0° dihedral angle, whereas 650 nm excitation accesses a strongly allowed transition from D0 to D4 at a dihedral angle of 90°. This ability to access different electronic excited states at different locations along the potential energy surface accounts for the selective fragmentation observed with different probe wavelengths. The ring-stretching mode, only observed using 800 nm excitation, is attributed to a D0 to D2 transition at a geometry with 90° dihedral angle and elongated C–N bond length. Collectively, these results demonstrate that strong field ionization induces multimode coherent excitation and that the vibrational wave packets can be excited with specific photon energies at different points on their potential energy surfaces to induce selective fragmentation.
Collapse
|
4
|
Singh V, López Peña HA, Shusterman JM, Vindel-Zandbergen P, Tibbetts KM, Matsika S. Conformer-Specific Dissociation Dynamics in Dimethyl Methylphosphonate Radical Cation. Molecules 2022; 27:2269. [PMID: 35408667 PMCID: PMC9000782 DOI: 10.3390/molecules27072269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The dynamics of the dimethyl methylphosphonate (DMMP) radical cation after production by strong field adiabatic ionization have been investigated. Pump-probe experiments using strong field 1300 nm pulses to adiabatically ionize DMMP and a 800 nm non-ionizing probe induce coherent oscillations of the parent ion yield with a period of about 45 fs. The yields of two fragments, PO2C2H7+ and PO2CH4+, oscillate approximately out of phase with the parent ion, but with a slight phase shift relative to each other. We use electronic structure theory and nonadiabatic surface hopping dynamics to understand the underlying dynamics. The results show that while the cation oscillates on the ground state along the P=O bond stretch coordinate, the probe excites population to higher electronic states that can lead to fragments PO2C2H7+ and PO2CH4+. The computational results combined with the experimental observations indicate that the two conformers of DMMP that are populated under experimental conditions exhibit different dynamics after being excited to the higher electronic states of the cation leading to different dissociation products. These results highlight the potential usefulness of these pump-probe measurements as a tool to study conformer-specific dynamics in molecules of biological interest.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| | - Hugo A. López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.A.L.P.); (J.M.S.); (K.M.T.)
| | - Jacob M. Shusterman
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.A.L.P.); (J.M.S.); (K.M.T.)
| | | | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.A.L.P.); (J.M.S.); (K.M.T.)
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
5
|
Solling TI. Nonstatistical Photoinduced Processes in Gaseous Organic Molecules. ACS OMEGA 2021; 6:29325-29344. [PMID: 34778606 PMCID: PMC8581993 DOI: 10.1021/acsomega.1c04035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 05/26/2023]
Abstract
Processes that proceed in femtoseconds are usually referred to as being ultrafast, and they are investigated in experiments that involve laser pulses with femtosecond duration in so-called pump probe schemes, where a light pulse triggers a molecular process and a second light pulse interrogates the temporal evolution of the molecular population. The focus of this review is on the reactivity patterns that arise when energy is not equally distributed on all the available degrees of freedom as a consequence of the very short time scale in play and on how the localization of internal energy in a specific mode can be thought of as directing a process toward (or away from) a certain outcome. The nonstatistical aspects are illustrated with examples from photophysics and photochemistry for a range of organic molecules. The processes are initiated by a variety of nuclear motions that are all governed by the energy gradients in the Franck-Condon region. Essentially, the molecules will start to adapt to the new electronic environment on the excited state to eventually reach the equilibrium structure. It is this structural change that is enabling an ultrafast electronic transition in cases where the nuclear motion leads to a transition point with significant coupling between to electronic states and to ultrafast reaction if there is a coupling to a reactive mode at the transition point between the involved states. With the knowledge of the relation between electronic excitation and equilibrium structure, it is possible to predict how the nuclei move after excitation and often whether an ultrafast (and inherently nonstatistical) electronic transition or even a bond breakage will take place. In addition to the understanding of how nonstatistical photoinduced processes proceed from a given excited state, it has been found that randomization of the energy does not even always take place when the molecule takes part in processes that are normally considered statistical, such as for example nonradiative transitions between excited states. This means that energy can be localized in a specific degree of freedom on a state other than the one that is initially prepared. This is a finding that could kickoff the ultimate dream in applied photochemistry; namely light excitation that leads to the rupture of a specific bond.
Collapse
Affiliation(s)
- Theis I. Solling
- Center for Integrative Petroleum
Research, King Fahd University of Petroleum
& Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
McPherson SL, Shusterman JM, López Peña HA, Ampadu Boateng D, Tibbetts KM. Quantitative Analysis of Nitrotoluene Isomer Mixtures Using Femtosecond Time-Resolved Mass Spectrometry. Anal Chem 2021; 93:11268-11274. [PMID: 34347440 DOI: 10.1021/acs.analchem.1c02245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Discrimination of isomers in a mixture is a subject of ongoing interest in biology, pharmacology, and forensics. We demonstrate that femtosecond time-resolved mass spectrometry (FTRMS) effectively quantifies mixtures of ortho-, para-, and meta-nitrotoluenes, the first two of which are common explosive degradation products. The key advantage of the FTRMS approach to mixture quantification lies in the ability of the pump-probe laser control scheme to capture distinct fragmentation dynamics of each nitrotoluene cation isomer on femtosecond timescales, thereby allowing for discrimination of the isomers using only the signal of the parent molecular ion at m/z 137. Upon measurement of reference dynamics of each individual isomer, the molar fractions of binary and ternary mixtures can be predicted to within ∼5 and ∼7% accuracy, respectively.
Collapse
Affiliation(s)
- Shane L McPherson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Jacob M Shusterman
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hugo A López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Derrick Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
7
|
López Peña HA, Ampadu Boateng D, McPherson SL, Tibbetts KM. Using computational chemistry to design pump–probe schemes for measuring nitrobenzene radical cation dynamics. Phys Chem Chem Phys 2021; 23:13338-13348. [DOI: 10.1039/d1cp00360g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Computed potential energy surfaces of the nitrobenzene cation predict suitable excitation conditions for enhancing ion yield oscillations in time-resolved measurements.
Collapse
|
8
|
Wu JY, Cheng PY. Ultrafast Protonation of an Amide: Photoionization-Induced Proton Transfer in Phenol-Dimethylformamide Complex Cation. J Phys Chem A 2019; 123:10700-10713. [DOI: 10.1021/acs.jpca.9b09651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jun-Yi Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, R.
O. C
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, R.
O. C
| |
Collapse
|
9
|
Nie H, Li S, Qian S, Han Z, Zhang W. Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof MaterialsBeijing Oriental Yuhong Waterproof Technology Co., Ltd. 100123 Beijing China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University 300071 Tianjin China
| |
Collapse
|
10
|
Nie H, Li S, Qian S, Han Z, Zhang W. Switchable Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angew Chem Int Ed Engl 2019; 58:11449-11453. [PMID: 31190462 DOI: 10.1002/anie.201904991] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Modulating controlled radical polymerization is an interesting and important issue. Herein, modulating RAFT polymerization employing photosensitive azobenzenes is achieved. In the presence of azobenzenes and with visible light off, RAFT polymerization runs smoothly and follows a pseudo-first-order kinetics. In contrast, with light on, RAFT polymerization is greatly decelerated or quenched depending on the type and concentration of azobenzenes. Switchable RAFT polymerization of different (meth)acrylate monomers alternatively with light off and on is demonstrated. A mechanism of photoregulating RAFT polymerization involving radical quenching by azobenzenes is proposed.
Collapse
Affiliation(s)
- Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., 100123, Beijing, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| |
Collapse
|
11
|
Moore Tibbetts K. Coherent Vibrational and Dissociation Dynamics of Polyatomic Radical Cations. Chemistry 2019; 25:8431-8439. [DOI: 10.1002/chem.201900363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 01/26/2023]
|
12
|
Ampadu Boateng D, Word MD, Tibbetts KM. Probing Coherent Vibrations of Organic Phosphonate Radical Cations with Femtosecond Time-Resolved Mass Spectrometry. Molecules 2019; 24:E509. [PMID: 30708973 PMCID: PMC6384684 DOI: 10.3390/molecules24030509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Organic phosphates and phosphonates are present in a number of cellular components that can be damaged by exposure to ionizing radiation. This work reports femtosecond time-resolved mass spectrometry (FTRMS) studies of three organic phosphonate radical cations that model the DNA sugar-phosphate backbone: dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), and diisopropyl methylphosphonate (DIMP). Upon ionization, each molecular radical cation exhibits unique oscillatory dynamics in its ion yields resulting from coherent vibrational excitation. DMMP has particularly well-resolved 45 fs ( 732 ± 28 cm - 1 ) oscillations with a weak feature at 610⁻650 cm - 1 , while DIMP exhibits bimodal oscillations with a period of ∼55 fs and two frequency features at 554 ± 28 and 670⁻720 cm - 1 . In contrast, the oscillations in DEMP decay too rapidly for effective resolution. The low- and high-frequency oscillations in DMMP and DIMP are assigned to coherent excitation of the symmetric O⁻P⁻O bend and P⁻C stretch, respectively. The observation of the same ionization-induced coherently excited vibrations in related molecules suggests a possible common excitation pathway in ionized organophosphorus compounds of biological relevance, while the distinct oscillatory dynamics in each molecule points to the potential use of FTRMS to distinguish among fragment ions produced by related molecules.
Collapse
Affiliation(s)
| | - Mi'Kayla D Word
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | |
Collapse
|
13
|
Ampadu Boateng D, Word MD, Gutsev LG, Jena P, Tibbetts KM. Conserved Vibrational Coherence in the Ultrafast Rearrangement of 2-Nitrotoluene Radical Cation. J Phys Chem A 2019; 123:1140-1152. [DOI: 10.1021/acs.jpca.8b11723] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Derrick Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mi’Kayla D. Word
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Lavrenty G. Gutsev
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
14
|
Waters MDJ, Skov AB, Larsen MAB, Clausen CM, Weber PM, Sølling TI. Symmetry controlled excited state dynamics. Phys Chem Chem Phys 2019; 21:2283-2294. [DOI: 10.1039/c8cp05950k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Symmetry effects in internal conversion are studied by means of two isomeric cyclic tertiary aliphatic amines in a velocity map imaging (VMI) experiment on the femtosecond timescale. We conclude that lessening the symmetry of the molecule leads to loss of coherence after internal conversion between Rydberg states.
Collapse
Affiliation(s)
- Max D. J. Waters
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen Ø
- Denmark
| | - Anders B. Skov
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen Ø
- Denmark
| | | | | | | | - Theis I. Sølling
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen Ø
- Denmark
| |
Collapse
|
15
|
Sølling TI, Møller KB. Perspective: Preservation of coherence in photophysical processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2018; 5:060901. [PMID: 30868079 PMCID: PMC6404954 DOI: 10.1063/1.5079265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Coherence is one of the most important phenomena in ultrafast sciences. We give our perspective on the terminology, observation, and preservation of coherence in photophysical processes with some glimpses to the past and some looking-head to what may pave the way for scaling one of the last bastions in ultrafast science, namely, that of mode specific chemistry where it will be possible to break any specific bond by tailoring the pulse, an accomplishment that obviously would be the dream of any chemist.
Collapse
Affiliation(s)
- Theis I Sølling
- Center for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahad University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Ampadu Boateng D, Gutsev GL, Jena P, Tibbetts KM. Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C–NO2bond homolysis. J Chem Phys 2018; 148:134305. [DOI: 10.1063/1.5024892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Derrick Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Gennady L. Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | |
Collapse
|
17
|
Nenov A, Borrego-Varillas R, Oriana A, Ganzer L, Segatta F, Conti I, Segarra-Marti J, Omachi J, Dapor M, Taioli S, Manzoni C, Mukamel S, Cerullo G, Garavelli M. UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in trans-Azobenzene. J Phys Chem Lett 2018; 9:1534-1541. [PMID: 29504764 DOI: 10.1021/acs.jpclett.8b00152] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We combine sub-20 fs transient absorption spectroscopy with state-of-the-art computations to study the ultrafast photoinduced dynamics of trans-azobenzene (AB). We are able to resolve the lifetime of the ππ* state, whose decay within ca. 50 fs is correlated to the buildup of the nπ* population and to the emergence of coherences in the dynamics, to date unobserved. Nonlinear spectroscopy simulations call for the CNN in-plane bendings as the active modes in the subps photoinduced coherent dynamics out of the ππ* state. Radiative to kinetic energy transfer into these modes drives the system to a high-energy planar nπ*/ground state conical intersection, inaccessible upon direct excitation of the nπ* state, that triggers an ultrafast (0.45 ps) nonproductive decay of the nπ* state and is thus responsible for the observed Kasha rule violation in UV excited trans-AB. On the other hand, cis-AB is built only after intramolecular vibrational energy redistribution and population of the NN torsional mode.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Rocio Borrego-Varillas
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Aurelio Oriana
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Lucia Ganzer
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Francesco Segatta
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Javier Segarra-Marti
- Laboratoire de Chimie UMR 5182 , Université Lyon, ENS de Lyon, CNRS, Université Lyon 1 , 46 Allée d'Italie , FR-69342 Lyon , France
| | - Junko Omachi
- Institute for Photon Science and Technology , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Maurizio Dapor
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
| | - Simone Taioli
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN) , 38123 Trento , Italy
- Faculty of Mathematics and Physics , Charles University , Praha 8 , 180 00 Prague , Czech Republic
| | - Cristian Manzoni
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Shaul Mukamel
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|