1
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Wong C, Liu S, Nizkorodov SA. Highly Acidic Conditions Drastically Alter the Chemical Composition and Absorption Coefficient of α-Pinene Secondary Organic Aerosol. ACS EARTH & SPACE CHEMISTRY 2022; 6:2983-2994. [PMID: 36561193 PMCID: PMC9762236 DOI: 10.1021/acsearthspacechem.2c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Secondary organic aerosols (SOA), formed through the gas-phase oxidation of volatile organic compounds (VOCs), can reside in the atmosphere for many days. The formation of SOA takes place rapidly within hours after VOC emissions, but SOA can undergo much slower physical and chemical processes throughout their lifetime in the atmosphere. The acidity of atmospheric aerosols spans a wide range, with the most acidic particles having negative pH values, which can promote acid-catalyzed reactions. The goal of this work is to elucidate poorly understood mechanisms and rates of acid-catalyzed aging of mixtures of representative SOA compounds. SOA were generated by the ozonolysis of α-pinene in a continuous flow reactor and then collected using a foil substrate. SOA samples were extracted and aged by exposure to varying concentrations of aqueous H2SO4 for 1-2 days. Chemical analysis of fresh and aged samples was conducted using ultra-performance liquid chromatography coupled with photodiode array spectrophotomety and high-resolution mass spectrometry. In addition, UV-vis spectrophotometry and fluorescence spectrophotometry were used to examine the changes in optical properties before and after aging. We observed that SOA that aged in moderately acidic conditions (pH from 0 to 4) experienced small changes in composition, while SOA that aged in a highly acidic environment (pH from -1 to 0) experienced more dramatic changes in composition, including the formation of compounds containing sulfur. Additionally, at highly acidic conditions, light-absorbing and fluorescent compounds appeared, but their identities could not be ascertained due to their small relative abundance. This study shows that acidity is a major driver of SOA aging, resulting in a large change in the chemical composition and optical properties of aerosols in regions where high concentrations of H2SO4 persist, such as upper troposphere and lower stratosphere.
Collapse
|
3
|
Condensed Phase Kinetic Studies of Hydroxynitrates Derived from the Photooxidation of Carene, Limonene, trans-Carveol, and Perillic Alcohol. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Organic hydroxynitrates (HNs) are key products of hydrocarbon oxidation in the atmosphere. Understanding the fate and processing of these molecules is critical due to their function in the sequestration of NOx species from the atmosphere and in the formation of secondary organic aerosol. However, the direct study of individual HNs’ reactivity has been largely hindered by the lack of authentic standards which has further limited the ability to deconvolute the role of structural features. Herein, we report the kinetic stabilities of six biogenic volatile organic compound-derived HN in acidified single-phase organic/water matrices. Lifetimes for tertiary HNs ranged from 15 min to 6.4 h, whereas secondary HN varied from 56 days to 2.1 years. Product analysis highlights the role that additional non-hydrolysis reactions have in the condensed phase conversion of HNs. This work provides the first evidence for the structural dependence of HN stability in bulk mixed media.
Collapse
|
4
|
Reactivity of a Carene-Derived Hydroxynitrate in Mixed Organic/Aqueous Matrices: Applying Synthetic Chemistry to Product Identification and Mechanistic Implications. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
β-hydroxynitrates (HN) are a major class of products formed during OH and NO3 initiated oxidation of terpenes. Their production contributes significantly to secondary organic aerosol (SOA) formation and NOx sequestration. However, studying the condensed phase reactions of this important class of molecules has been hindered by the lack of commercially available authentic standards. The goal of this work was to examine the influence of water concentration and solvent identity on product yields of a tertiary HN derived from 3-carene prepared in house. To assess the role of water on conversion chemistry, bulk-phase reactions were conducted in DMSO-d6, a non-nucleophilic solvent, with a gradient of water concentrations, and analyzed with 1H NMR. Product identifications were made by comparison with authentic standards prepared in house. Four major products were identified, including an unexpected diol produced from carbocation rearrangement, diol diastereomers, and trans-3-carene oxide, with varying yields as a function of water concentration. Product yields were also measured in two protic, nucleophilic solvents, MeOD-d4 and EtOD-d6. Finally, reactions with added chloride formed alkyl chloride products in yields approaching 30%. These results are among the first to highlight the complexities of nucleophilic reactions of hydroxynitrates in bulk, mixed aqueous/organic media and to identify new, unexpected products.
Collapse
|
5
|
Sarang K, Otto T, Rudzinski K, Schaefer T, Grgić I, Nestorowicz K, Herrmann H, Szmigielski R. Reaction Kinetics of Green Leaf Volatiles with Sulfate, Hydroxyl, and Nitrate Radicals in Tropospheric Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13666-13676. [PMID: 34583512 PMCID: PMC8529707 DOI: 10.1021/acs.est.1c03276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 05/28/2023]
Abstract
Green plants exposed to abiotic or biotic stress release C-5 and C-6 unsaturated oxygenated hydrocarbons called Green Leaf Volatiles (GLVs). GLVs partition into tropospheric waters and react to form secondary organic aerosol (SOA). We explored the kinetics of aqueous-phase reactions of 1-penten-3-ol (PENTOL), (Z)-2-hexen-1-ol (HEXOL), and (E)-2-hexen-1-al (HEXAL) with SO4•-, •OH, and NO3•. At 298 K, the rate constants for reactions of PENTOL, HEXOL, and HEXAL with SO4•- were, respectively, (9.4 ± 1.0) × 108 L mol-1 s-1, (2.5 ± 0.3) × 109 L mol-1 s-1, and (4.8 ± 0.2) × 108 L mol-1 s-1; with •OH - (6.3 ± 0.1) × 109 L mol-1 s-1, (6.7 ± 0.3) × 109 L mol-1 s-1, and (4.8 ± 0.3) × 109 L mol-1 s-1; and with NO3• - (1.5 ± 0.15) × 108 L mol-1 s-1, (8.4 ± 2.3) × 108 L mol-1 s-1, and (3.0 ± 0.7) × 107 L mol-1 s-1. The rate constants increased weakly with temperatures ranging from 278 to 318 K. The diffusional limitations of the rate constants appeared significant only for the GLV-•OH reactions. The aqueous-phase reactions appeared negligible in deliquescent aerosol and haze water but not in clouds and rains. The atmospheric lifetimes of GLVs decreased from many days to hours with increasing liquid water content and radicals' concentration.
Collapse
Affiliation(s)
- Kumar Sarang
- Environmental
Chemistry Group, Institute of Physical Chemistry
Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Tobias Otto
- Atmospheric
Chemistry Department, Leibniz Institute
for Tropospheric Research, 04318, Leipzig, Germany
| | - Krzysztof Rudzinski
- Environmental
Chemistry Group, Institute of Physical Chemistry
Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Thomas Schaefer
- Atmospheric
Chemistry Department, Leibniz Institute
for Tropospheric Research, 04318, Leipzig, Germany
| | - Irena Grgić
- Department
of Analytical Chemistry, National Institute
of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Klara Nestorowicz
- Environmental
Chemistry Group, Institute of Physical Chemistry
Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Hartmut Herrmann
- Atmospheric
Chemistry Department, Leibniz Institute
for Tropospheric Research, 04318, Leipzig, Germany
| | - Rafal Szmigielski
- Environmental
Chemistry Group, Institute of Physical Chemistry
Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Tilgner A, Schaefer T, Alexander B, Barth M, Collett JL, Fahey KM, Nenes A, Pye HOT, Herrmann H, McNeill VF. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:10.5194/acp-21-13483-2021. [PMID: 34675968 PMCID: PMC8525431 DOI: 10.5194/acp-21-13483-2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.
Collapse
Affiliation(s)
- Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA 98195, USA
| | - Mary Barth
- Atmospheric Chemistry Observation & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Xu L, Tsona NT, Du L. Relative Humidity Changes the Role of SO 2 in Biogenic Secondary Organic Aerosol Formation. J Phys Chem Lett 2021; 12:7365-7372. [PMID: 34324359 DOI: 10.1021/acs.jpclett.1c01550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SO2 influences secondary organic aerosol (SOA) and organosulfates (OSs) formation but mechanisms remain elusive. This study focuses on this topic by investigating biogenic γ-terpinene ozonolysis under various SO2 and relative humidity (RH) conditions. With a constant SO2 concentration (∼110 ppb), the increase in RH transformed SO2 sinks from stabilized Criegee intermediates (sCIs) to peroxides in aerosol particles. The associated changes in particle acidity and liquid water content may collectively first lead to decreased and then increased SOA yield with increasing RH, with the turning point appearing at ∼30% RH. The abundance of most OSs formed under 45% RH was more than 5 times higher than that of OSs formed under 10% RH, possibly due to interactions of dissolved SO2 with hydroperoxides (ROOH) in SOA. ROOHs formed from the autoxidation processes of alkylperoxy radicals were proposed to be precursors for highly oxidized OSs (HOOSs) that decreased SOA volatility and showed a certain abundance in ambient aerosols. This study highlights that high RH potentially enhances the contribution of SO2 to OSs formation, and particularly, HOOSs formation during monoterpene ozonolysis in the atmosphere.
Collapse
Affiliation(s)
- Li Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Wang Y, Tong R, Yu JZ. Chemical Synthesis of Multifunctional Air Pollutants: Terpene-Derived Nitrooxy Organosulfates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8573-8582. [PMID: 34165958 DOI: 10.1021/acs.est.1c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrooxy organosulfates derived from terpenes (NOSTP) represent an important class of products formed between anthropogenic pollution (e.g., SO2 and NOx) and natural emissions. NOSTP compounds have been consistently detected in atmospheric environments under varying urban influences. Their chemical linkages to both anthroposphere and biosphere make them valuable markers for tracking anthroposphere-biosphere interactions. However, their quantification, formation, and transformation kinetics in atmospheric aerosols are hindered due to the lack of NOSTP standards. In this work, we developed two routes for the first concise chemical synthesis of eight NOSTP from terpenes including α-pinene, β-pinene, limonene, limonaketone, and β-caryophyllene. Subsequently, six of the synthesized NOSTP were for the first time positively identified in ambient aerosol samples, clarifying certain misidentifications in previous studies. More significantly, the availability of authentic standards allows irrefutable observation of three carbon skeleton-rearranged NOSTP, two derived from α-pinene, and one derived from β-caryophyllene, revealing the occurrence of previously unrecognized transformation pathways in the formation of NOSTP. Two synthesized NOSTP from β-pinene and limonene could not be detected, likely due to rapid hydrolysis of their immediate hydroxynitrate precursors outcompeting sulfation. Such mechanistic evidence is valuable in understanding the atmospheric chemistry of NOSTP and related compounds. This work demonstrates the usefulness of authentic standards in probing the NOSTP formation mechanisms in the atmosphere. Comparison of NOSTP ambient samples collected from four Chinese cities in two winter months indicates that anthropogenic chemical factors could outcompete terpene emissions in the formation of NOSTP.
Collapse
Affiliation(s)
- Yuchen Wang
- Division of Environment & Sustainability, Hong Kong University of Science & Technology, Clear Water bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water bay, Kowloon, Hong Kong, China
| | - Jian Zhen Yu
- Division of Environment & Sustainability, Hong Kong University of Science & Technology, Clear Water bay, Kowloon, Hong Kong, China
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water bay, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Xu L, Yang Z, Tsona NT, Wang X, George C, Du L. Anthropogenic-Biogenic Interactions at Night: Enhanced Formation of Secondary Aerosols and Particulate Nitrogen- and Sulfur-Containing Organics from β-Pinene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7794-7807. [PMID: 34044541 DOI: 10.1021/acs.est.0c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixing of anthropogenic gaseous pollutants and biogenic volatile organic compounds impacts the formation of secondary aerosols, but still in an unclear manner. The present study explores secondary aerosol formation via the interactions between β-pinene, O3, NO2, SO2, and NH3 under dark conditions. Results showed that aerosol yield can be largely enhanced by more than 330% by NO2 or SO2 but slightly enhanced by NH3 by 39% when the ratio of inorganic gases to β-pinene ranged from 0 to 1.3. Joint effects of NO2 and SO2 and SO2 and NH3 existed as aerosol yields increased with NO2 but decreased with NH3 when SO2 was kept constant. Infrared spectra showed nitrogen-containing aerosol components derived from NO2 and NH3 and sulfur-containing species derived from SO2. Several particulate organic nitrates (MW 215, 229, 231, 245), organosulfates (MW 250, 264, 280, 282, 284), and nitrooxy organosulfates (MW 295, 311, 325, 327, and 343) were identified using high-resolution orbitrap mass spectrometry in NO2 and SO2 experiments, and their formation mechanism is discussed. Most of these nitrogen- and sulfur-containing species have been reported in ambient particles. Our results suggest that the complex interactions among β-pinene, O3, NO2, SO2, and NH3 during the night might serve as a potential pathway for the formation of particulate nitrogen- and sulfur-containing organics, especially in polluted regions with both anthropogenic and biogenic influences.
Collapse
Affiliation(s)
- Li Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhaomin Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xinke Wang
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Christian George
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Heichel DL, Vy NCH, Ward SP, Adamson DH, Burke KA. Controlled radical polymerization of hydrophilic and zwitterionic brush-like polymers from silk fibroin surfaces. J Mater Chem B 2020; 8:10392-10406. [PMID: 33112356 DOI: 10.1039/d0tb01990a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bombyx mori silk fibroin is a fibrous protein whose tunable properties and biocompatibility have resulted in its utility in a wide-variety of applications, including as drug delivery vehicles, wound dressings, and tissue engineering scaffolds. Control of protein and cell attachment is vital to the performance of biomaterials, but silk fibroin is mostly hydrophobic and interacts nonspecifically with cells and proteins. Silk functionalised with hydrophilic polymers reduces attachment, but the low number of reactive sites makes achieving a uniform conjugation a persistent challenge. This work presents a new approach to grow brush-like polymers from the surface of degradable silk films, where the films were enriched with hydroxyl groups, functionalised with an initiator, and finally reacted with acrylate monomers using atom transfer radical polymerisation. Two different routes to hydroxyl enrichment were investigated, one involving reaction with ethylene oxide (EO) and the other using a two-step photo-catalysed oxidation reaction. Both routes increased surface hydrophilicity, and hydrophilic monomers containing either uncharged (poly(ethylene glycol), PEG) pendant groups or zwitterionic pendant groups were polymerised from the surfaces. The initial processing of the films to induce beta sheet structures was found to impact the success of the polymerizations. Compared to the EO modified or unmodified silk surfaces, the oxidation reaction resulted in more polymer conjugation and the surfaces appear more uniform. Mesenchymal stem cell and protein attachment were the lowest on polymers grown from oxidised surfaces. PEG-containing brush-like polymers displayed lower protein attachment than surfaces conjugated with PEG using a previously reported "grafting to" method, but polymers containing zwitterionic side chains displayed both the lowest contact angles and the lowest cell and protein attachment. This finding may arise from the interactions of the zwitterionic pendant groups through their permanent dipoles and is an important finding because PEG is susceptible to oxidative damage that can reduce efficacy over time. These modified silk materials with lower cell and protein attachments are envisioned to find utility when enhanced diffusion around surfaces is required, such as in drug delivery implants.
Collapse
Affiliation(s)
- Danielle L Heichel
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA
| | - Ngoc Chau H Vy
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA
| | - Shawn P Ward
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road Unit 3060, Storrs, CT 06269-3060, USA
| | - Douglas H Adamson
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA and Department of Chemistry, University of Connecticut, 55 North Eagleville Road Unit 3060, Storrs, CT 06269-3060, USA
| | - Kelly A Burke
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA and Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, CT 06269-3222, USA. and Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, CT 06269-3247, USA
| |
Collapse
|
11
|
Amorim JV, Wu S, Klimchuk K, Lau C, Williams FJ, Huang Y, Zhao R. pH Dependence of the OH Reactivity of Organic Acids in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12484-12492. [PMID: 32936620 DOI: 10.1021/acs.est.0c03331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Photochemical processing taking place in atmospheric aqueous phases serves as both a source and a sink of organic compounds. In aqueous environments, acid-base chemistry and, by extension, aqueous-phase pH, are an important yet often neglected factors to consider when investigating the kinetics of organic compounds. We have investigated the aqueous-phase OH-oxidation of pinic acid, cis-pinonic acid, limononic acid, and formic acid (FA) as a function of pH. We have also extended our studies to other organic acids (OAs) present in the water-soluble fraction of secondary organic aerosol (SOA) arising from the ozonolysis of α-pinene. Although all the OAs exhibited larger OH reactivities at pH 10, the pH dependence was dramatically different between FA, the smallest OA, and those that contained more than eight carbons. A kinetic box model was also employed to characterize our photoreactor and to provide confidence to our results. Our finding shows that the atmospheric lifetimes of small OAs (e.g., FA) are highly sensitive to cloud water pH. However, those of larger OAs and many other OAs in α-pinene SOA are affected to a much less extent. These results are of great importance for the simplification of cloud water chemistry models.
Collapse
Affiliation(s)
- Jéssica Vejdani Amorim
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Keifer Klimchuk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Florence J Williams
- Department of Chemistry, University of Iowa, W285 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Yuanlong Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Ran Zhao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
12
|
Brüggemann M, Xu R, Tilgner A, Kwong KC, Mutzel A, Poon HY, Otto T, Schaefer T, Poulain L, Chan MN, Herrmann H. Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3767-3782. [PMID: 32157872 DOI: 10.1021/acs.est.9b06751] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Organosulfates (OSs), also referred to as organic sulfate esters, are well-known and ubiquitous constituents of atmospheric aerosol particles. Commonly, they are assumed to form upon mixing of air masses of biogenic and anthropogenic origin, that is, through multiphase reactions between organic compounds and acidic sulfate particles. However, in contrast to this simplified picture, recent studies suggest that OSs may also originate from purely anthropogenic precursors or even directly from biomass and fossil fuel burning. Moreover, besides classical OS formation pathways, several alternative routes have been discovered, suggesting that OS formation possibly occurs through a wider variety of formation mechanisms in the atmosphere than initially expected. During the past decade, OSs have reached a constantly growing attention within the atmospheric science community with evermore studies reporting on large numbers of OS species in ambient aerosol. Nonetheless, estimates on OS concentrations and implications on atmospheric physicochemical processes are still connected to large uncertainties, calling for combined field, laboratory, and modeling studies. In this Critical Review, we summarize the current state of knowledge in atmospheric OS research, discuss unresolved questions, and outline future research needs, also in view of reductions of anthropogenic sulfur dioxide (SO2) emissions. Particularly, we focus on (1) field measurements of OSs and measurement techniques, (2) formation pathways of OSs and their atmospheric relevance, (3) transformation, reactivity, and fate of OSs in atmospheric particles, and (4) modeling efforts of OS formation and their global abundance.
Collapse
Affiliation(s)
- Martin Brüggemann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Rongshuang Xu
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Kai Chung Kwong
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Anke Mutzel
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hon Yin Poon
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Tobias Otto
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Laurent Poulain
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Man Nin Chan
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
- The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
13
|
Duporté G, Flaud PM, Kammer J, Geneste E, Augagneur S, Pangui E, Lamkaddam H, Gratien A, Doussin JF, Budzinski H, Villenave E, Perraudin E. Experimental Study of the Formation of Organosulfates from α-Pinene Oxidation. 2. Time Evolution and Effect of Particle Acidity. J Phys Chem A 2019; 124:409-421. [DOI: 10.1021/acs.jpca.9b07156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Duporté
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - P.-M. Flaud
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - J. Kammer
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - E. Geneste
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - S. Augagneur
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - E. Pangui
- Université Paris-Est-Créteil (UPEC) and Université Paris Diderot (UPD), LISA, UMR 7583, F-94010 Créteil, France
| | - H. Lamkaddam
- Université Paris-Est-Créteil (UPEC) and Université Paris Diderot (UPD), LISA, UMR 7583, F-94010 Créteil, France
| | - A. Gratien
- Université Paris-Est-Créteil (UPEC) and Université Paris Diderot (UPD), LISA, UMR 7583, F-94010 Créteil, France
| | - J.-F. Doussin
- Université Paris-Est-Créteil (UPEC) and Université Paris Diderot (UPD), LISA, UMR 7583, F-94010 Créteil, France
| | - H. Budzinski
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - E. Villenave
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - E. Perraudin
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| |
Collapse
|
14
|
Wang Y, Ma Y, Li X, Kuang BY, Huang C, Tong R, Yu JZ. Monoterpene and Sesquiterpene α-Hydroxy Organosulfates: Synthesis, MS/MS Characteristics, and Ambient Presence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12278-12290. [PMID: 31584263 DOI: 10.1021/acs.est.9b04703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organosulfates (OSs) derived from biogenic volatile organic compounds are important compounds signifying interactions between anthropogenic sulfur pollution and natural emission. In this work, we substantially expand the OS standard library through the chemical synthesis of 26 α-hydroxy OS standards from eight monoterpenes (i.e., α- and β-pinene, limonene, sabinene, Δ3-carene, terpinolene, and α- and γ-terpinene) and two sesquiterpenes (i.e., α-humulene and β-caryophyllene). The sulfation of unsymmetrically substituted 1,2-diol intermediates produced a regioisomeric mixture of two OSs. The major regioisomeric OSs were isolated and purified for full NMR characterization, while the minor regioisomers could only be determined by liquid chromatograph-mass spectrometer (MS). The tandem mass spectra of the molecular ion formed through electrospray ionization confirmed the formation of abundant bisulfate ion fragments (m/z 97) and certain minor ion fragments characteristic of the carbon backbone. A knowledge of the MS/MS spectra and chromatographic retention times for authentic standards allows us to identify α-hydroxy OSs derived from six monoterpenes and β-caryophyllene in ambient samples. Notably, among two possible regioisomers of α-hydroxy OSs, we only detected the isomers with the sulfate group at the less substituted carbon position derived from α-pinene, limonene, sabinene, Δ3-carene, and terpinolene in the ambient samples. This observation sheds light on the atmospheric OS formation mechanisms.
Collapse
Affiliation(s)
| | - Yingge Ma
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Xiaojing Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China
| | | | - Cheng Huang
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | | | | |
Collapse
|
15
|
Otto T, Schaefer T, Herrmann H. Aqueous-Phase Oxidation of Terpene-Derived Acids by Atmospherically Relevant Radicals. J Phys Chem A 2018; 122:9233-9241. [PMID: 30359526 DOI: 10.1021/acs.jpca.8b08922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terpene-derived acids formed through the atmospheric gas-phase oxidation of terpenes are able to efficiently undergo a phase transfer into the aqueous phase. The subsequent aqueous-phase oxidation of such compounds has not been intensely studied. Accordingly, the aqueous-phase second-order rate constants of the oxidation reactions of cis-pinonic acid (CPA) and (+)-camphoric acid (+CA) with hydroxyl radicals (•OH), nitrate radicals (NO3•), and sulfate radicals (SO4•-) were investigated as a function of temperature and pH in the present study. For CPA and +CA the following •OH reaction rate constants at T = 298 K are determined: ksecond(CPA, pH<2) = (2.8 ± 0.1) × 109 L mol-1 s-1, ksecond(CPA, pH>8) = (2.7 ± 0.3) × 109 L mol-1 s-1, ksecond(+CA, pH<2) = (2.1 ± 0.1) × 109 L mol-1 s-1, ksecond(+CA, pH=5.3) = (2.7 ± 0.3) × 109 L mol-1 s-1, ksecond(+CA, pH>8) = (2.7 ± 0.1) × 109 L mol-1 s-1. In order to assess the atmospheric impact of the aqueous-phase oxidation of such compounds, atmospheric aqueous-phase lifetimes were calculated for two model scenarios based on CAPRAM 3.0i. The aqueous-phase oxidation under remote conditions emerges to be the most favored pathway with lifetimes of 5 ± 1 h.
Collapse
Affiliation(s)
- Tobias Otto
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| |
Collapse
|
16
|
Witkowski B, Al-Sharafi M, Gierczak T. Kinetics of Limonene Secondary Organic Aerosol Oxidation in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11583-11590. [PMID: 30207709 DOI: 10.1021/acs.est.8b02516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Twenty semivolatile organic compounds that contribute to limonene secondary organic aerosol (SOA) were synthesized in the flow-tube reactor. Kinetics of the aqueous-phase oxidation of the synthesized compounds by hydroxyl radicals (OH) and ozone (O3) were investigated at 298 ± 2 K using the relative rate method. Oxidized organic compounds identified as the major components of limonene SOA were quantified with liquid chromatography coupled to the electrospray ionization and quadrupole tandem mass spectrometry (LC-ESI/MS/MS). The bimolecular rate coefficients measured for the oxidation products of limonene are kOH = 2-5 × 109 M-1 s-1 for saturated and kOH = 1-2 × 1010 M-1 s-1 for unsaturated compounds. Ozonolysis reaction bimolecular rate coefficients obtained for the unsaturated compounds in the aqueous phase are between 2 and 6 × 104 M-1 s-1. The results obtained in this work also indicate that oxidation of limonene carboxylic acids by OH was about a factor of 2 slower for the carboxylate ions than for the protonated acids while the opposite was true for the ozonolysis. The data acquired provided new insights into kinetics of the limonene SOA processing in the aqueous phase. Ozonolysis of limonene SOA also increased the concentration of dimers, most likely due to reactions of the stabilized Criegee intermediates with the other, stable products. These results indicate that aqueous-phase oxidation of limonene SOA by OH and O3 will be relevant in clouds, fogs, and wet aerosols.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Mohammed Al-Sharafi
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Tomasz Gierczak
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
17
|
Jiang K, Hill DR, Elrod MJ. Assessing the Potential for Oligomer Formation from the Reactions of Lactones in Secondary Organic Aerosols. J Phys Chem A 2018; 122:292-302. [DOI: 10.1021/acs.jpca.7b10411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kallie Jiang
- Department of Chemistry and
Biochemistry, Oberlin College, Oberlin, Ohio 44074 United States
| | - Daniel R. Hill
- Department of Chemistry and
Biochemistry, Oberlin College, Oberlin, Ohio 44074 United States
| | - Matthew J. Elrod
- Department of Chemistry and
Biochemistry, Oberlin College, Oberlin, Ohio 44074 United States
| |
Collapse
|