1
|
Amonov A, Scheiner S. Halogen Bonding to the π-Systems of Polycyclic Aromatics. Chemphyschem 2024; 25:e202400482. [PMID: 38923736 DOI: 10.1002/cphc.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The propensity of the π-electron system lying above a polycyclic aromatic system to engage in a halogen bond is examined by DFT calculations. Prototype Lewis acid CF3I is placed above the planes of benzene, naphthalene, anthracene, phenanthrene, naphthacene, chrysene, triphenyl, pyrene, and coronene. The I atom positions itself some 3.3-3.4 Å above the polycyclic plane, and the associated interaction energy is about 4 kcal/mol. This quantity is a little smaller for benzene, but is roughly equal for the larger polycyclics. The energy only oscillates a little as the Lewis acid slides across the face of the polycyclic, preferring regions of higher π-electron density over minima of the electrostatic potential. The binding is dominated by dispersion which contributes half of the total interaction energy.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy, Institute of Engineering Physics Samarkand State University, University blv. 15, 140104, Samarkand, Uzbekistan
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| |
Collapse
|
2
|
Ivanov DM, Bokach NA, Yu Kukushkin V, Frontera A. Metal Centers as Nucleophiles: Oxymoron of Halogen Bond-Involving Crystal Engineering. Chemistry 2021; 28:e202103173. [PMID: 34623005 PMCID: PMC9298210 DOI: 10.1002/chem.202103173] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
This review highlights recent studies discovering unconventional halogen bonding (HaB) that involves positively charged metal centers. These centers provide their filled d‐orbitals for HaB, and thus behave as nucleophilic components toward the noncovalent interaction. This role of some electron‐rich transition metal centers can be considered an oxymoron in the sense that the metal is, in most cases, formally cationic; consequently, its electron donor function is unexpected. The importance of Ha⋅⋅⋅d‐[M] (Ha=halogen; M is Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au)) interactions in crystal engineering is emphasized by showing remarkable examples (reported and uncovered by our processing of the Cambridge Structural Database), where this Ha⋅⋅⋅d‐[M] directional interaction guides the formation of solid supramolecular assemblies of different dimensionalities.
Collapse
Affiliation(s)
- Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul, 656049, Russian Federation
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain
| |
Collapse
|
3
|
Scheiner S. Comparison of Bifurcated Halogen with Hydrogen Bonds. Molecules 2021; 26:molecules26020350. [PMID: 33445461 PMCID: PMC7827642 DOI: 10.3390/molecules26020350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/30/2023] Open
Abstract
Bifurcated halogen bonds are constructed with FBr and FI as Lewis acids, paired with NH3 and NCH bases. The first type considered places two bases together with a single acid, while the reverse case of two acids sharing a single base constitutes the second type. These bifurcated systems are compared with the analogous H-bonds wherein FH serves as the acid. In most cases, a bifurcated system is energetically inferior to a single linear bond. There is a larger energetic cost to forcing the single σ-hole of an acid to interact with a pair of bases, than the other way around where two acids engage with the lone pair of a single base. In comparison to FBr and FI, the H-bonding FH acid is better able to participate in a bifurcated sharing with two bases. This behavior is traced to the properties of the monomers, in particular the specific shape of the molecular electrostatic potential, the anisotropy of the orbitals of the acid and base that interact directly with one another, and the angular extent of the total electron density of the two molecules.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
4
|
Srivastava R. Nucleobase Pair-Metal Dimer/Dinuclear Metal Cation Interaction: A Theoretical Study. ACS OMEGA 2020; 5:18808-18817. [PMID: 32775882 PMCID: PMC7408194 DOI: 10.1021/acsomega.0c01931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Nucleobase pair-metal dimer/dinuclear metal cation interactions play an important role in biological applications because of their highly symmetrical structures and high stabilities. In this work, we have selected five adenine-adenine hydrogen bonding, adenine-thymine (AT), adenine-uracil, adenine-adenine stacking pairs, and Watson-Crick AT stacking pairs and studied their interaction with the coinage metal dimer M2 and M2 2+ metal cations, where M = Ag, Au, and Cu. Quantum chemical calculations have been carried out with density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Electronic structures were analyzed by the partial density of states method. During interactions, we find that M-M distances are shorter than the sum of van der Waals radii of the corresponding two homocoinage metal atoms, which show the existence of significant metallophilic interactions. Results indicated that nucleobase-M2 2+ complexes are stronger as compared to nucleobase-M2 complexes. Also, the replacement of the hydrogen bond by the dinuclear metal cation-coordinated bond forms more stable alternative metallo-DNA sequences in AAST base pairs. TDDFT calculations reveal that nucleobase-Cu2 complexes and nucleobase-Ag2 2+/Au2 2+ complexes can be used for fluorescent markers and logic gate applications. Atom-in-molecules analysis predicted the noncovalent interaction in these complexes.
Collapse
Affiliation(s)
- Ruby Srivastava
- Bioinformatics, CSIR-Centre
for Cellular and Molecular Biology, Hyderabad 500607, India
| |
Collapse
|
5
|
Cao GJ, Jia XD. Theoretical studies on dihedral angle-bending isomers of M2Pt20/− clusters. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Guo-jin Cao
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xiu-dong Jia
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
|
7
|
Dinuclear Metal-Mediated Guanine–Uracil Base Pairs: Theoretical Studies of GUM22+ (M = Cu, Ag, and Au) Ions. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01503-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Lee S, Johnson SN, Ellington TL, Mirsaleh-Kohan N, Tschumper GS. Energetics and Vibrational Signatures of Nucleobase Argyrophilic Interactions. ACS OMEGA 2018; 3:12936-12943. [PMID: 31458017 PMCID: PMC6645001 DOI: 10.1021/acsomega.8b01895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/27/2018] [Indexed: 06/10/2023]
Abstract
This study investigates the interactions of both purine (adenine and guanine) and pyrimidine (cytosine, thymine, and uracil) nucleobases with a pair of silver atoms (Ag2). Full geometry optimizations were performed on several structures of each nucleobase/Ag2 complex and the corresponding isolated monomers using the M06-2X density functional with a correlation consistent triple-ζ basis set augmented with diffuse functions on all atoms and a relativistic pseudopotential on Ag (aug-cc-pVTZ for H, C, N, and O and aug-cc-pVTZ-PP for Ag; denoted aVTZ). Harmonic vibrational frequency computations indicate that each optimized structure corresponds to a minimum on the M06-2X/aVTZ potential energy surface. Relative electronic energies for interactions between Ag2 and each nucleobase were compared to elucidate energetic differences between isomers. Further analysis of the changes in vibrational frequencies, infrared intensities, and Raman scattering activities reveals how different Ag2 binding sites might be differentiated spectroscopically. These results provide molecular-level insight into the interactions between nucleobases and silver, which may lead to better understanding and interpretation of surface-enhanced Raman spectroscopy experiments on nucleobases and related systems.
Collapse
Affiliation(s)
- Suhwan
Paul Lee
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi 38677-1848, United States
| | - Sarah N. Johnson
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi 38677-1848, United States
| | - Thomas L. Ellington
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi 38677-1848, United States
| | - Nasrin Mirsaleh-Kohan
- Department
of Chemistry and Biochemistry, Texas Woman’s
University, Denton, Texas 76204, United States
| | - Gregory S. Tschumper
- Department
of Chemistry and Biochemistry, University
of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
9
|
Cao GJ. A dinuclear Cu(i)-mediated complex: Theoretical studies of the G 2Cu 2 4+ cluster ion. J Chem Phys 2018; 149:144308. [PMID: 30316268 DOI: 10.1063/1.5038366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, the T-Hg(ii)2-A base pair containing two equivalents of Hg(ii) has been prepared and characterized experimentally, which implies that there might exist considerable stable metal-mediated base pairs holding two neighbouring metal centers. Here we report a quantum chemical study on geometries, electronic structures, and bonding of various G2Cu2 4+ (G = guanine) isomers including one di-copper(i) unit. Different density functional methods [Becke 3-parameter-Lee-Yang-Parr, Perdew-Becke-Ernzerhof, Becke-Perdew, Density Functional Theory with Dispersion Corrections (DFT-D)] assign ambiguous relative energies to these isomers with the singlet and triplet states. High-level ab initio [domain-based local pair natural orbital (DLPNO) coupled-cluster with single and double excitations and DLPNO-coupled-cluster with single, double, and perturbative triple excitations] calculations confirm that the lowest-lying isomer of the G2Cu2 4+ ion has C 2h symmetry with the singlet state and is comparable to the singly and doubly charged homologues (G2Cu2 + and G2Cu2 2+). The extended transition state (ETS)-natural orbitals for the chemical valence (ETS-NOCV) calculations point out that it has larger instantaneous interaction energy and bond dissociation energy than the corresponding singly and doubly charged complexes due to its relatively stronger attractive energies and weaker Pauli repulsion. The orbital interactions in the quadruply charged cluster chiefly come from Cu2 4+ ← G⋯G π donations. The results may help the understanding of the bonding properties of other potential metal-base pair complexes with the electron transfer.
Collapse
Affiliation(s)
- Guo-Jin Cao
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Harroun SG. The Controversial Orientation of Adenine on Gold and Silver. Chemphyschem 2018; 19:1003-1015. [DOI: 10.1002/cphc.201701223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Scott G. Harroun
- Department of Chemistry; Université de Montréal; Montréal Québec H3C 3J7 Canada
| |
Collapse
|