1
|
Leng M, Koripally N, Huang J, Vriza A, Lee KY, Ji X, Li C, Hays M, Tu Q, Dunbar K, Xu J, Ng TN, Fang L. Synthesis and exceptional operational durability of polyaniline-inspired conductive ladder polymers. MATERIALS HORIZONS 2023; 10:4354-4364. [PMID: 37455554 DOI: 10.1039/d3mh00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Ladder-type structures can impart exceptional stability to polymeric electronic materials. This article introduces a new class of conductive polymers featuring a fully ladder-type backbone. A judicious molecular design strategy enables the synthesis of a low-defect ladder polymer, which can be efficiently oxidized and acid-doped to achieve its conductive state. The structural elucidation of this polymer and the characterization of its open-shell nature are facilitated with the assistance of studies on small molecular models. An autonomous robotic system is used to optimize the conductivity of the polymer thin film, achieving over 7 mS cm-1. Impressively, this polymer demonstrates unparalleled stability in strong acid and under harsh UV-irradiation, significantly surpassing commercial benchmarks like PEDOT:PSS and polyaniline. Moreover, it displays superior durability across numerous redox cycles as the active material in an electrochromic device and as the pseudocapacitive material in a supercapacitor device. This work provides structural design guidance for durable conductive polymers for long-term device operation.
Collapse
Affiliation(s)
- Mingwan Leng
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Nandu Koripally
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA.
| | - Junjie Huang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Aikaterini Vriza
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Kyeong Yeon Lee
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Xiaozhou Ji
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Chenxuan Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Megan Hays
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Qing Tu
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Kim Dunbar
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Jie Xu
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Tse Nga Ng
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA.
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| |
Collapse
|
2
|
Ji X, Xie H, Zhu C, Zou Y, Mu AU, Al-Hashimi M, Dunbar KR, Fang L. Pauli Paramagnetism of Stable Analogues of Pernigraniline Salt Featuring Ladder-Type Constitution. J Am Chem Soc 2019; 142:641-648. [DOI: 10.1021/jacs.9b12626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiaozhou Ji
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Haomiao Xie
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Congzhi Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Anthony U. Mu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
3
|
Bláha M, Marek F, Morávková Z, Svoboda J, Brus J, Dybal J, Prokeš J, Varga M, Stejskal J. Role of p-Benzoquinone in the Synthesis of a Conducting Polymer, Polyaniline. ACS OMEGA 2019; 4:7128-7139. [PMID: 31459822 PMCID: PMC6648476 DOI: 10.1021/acsomega.9b00542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 06/10/2023]
Abstract
Polyaniline (PANI) and 2,5-dianilino-p-benzoquinone both are formed by oxidation of aniline in an acidic aqueous environment. The aim of this study is to understand the impact of addition of p-benzoquinone on the structure of PANI prepared by the oxidation of aniline hydrochloride with ammonium peroxydisulfate and to elucidate the formation of low-molecular-weight byproducts. An increasing yield and size-exclusion chromatography, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy, and nuclear magnetic resonance analyses of the products show that p-benzoquinone does not act as a terminating agent in the synthesis of PANI and the content of 2,5-dianilino-p-benzoquinone increases with the increasing molar concentration of p-benzoquinone in the reaction mixture, [BzQ]. Regarding the structure of PANI, Raman and UV-visible spectra show that the doping level and the charge delocalization both decrease with the increase of [BzQ], and the FTIR spectra of the PANI bases indicate an increased concentration of benzenoid units at higher [BzQ]. We explain these observations by an increasing concentration of structural defects in PANI chains and propose a 2,5-dianilino-p-benzoquinone-like structure of these defects present as pendant groups. The bands typical of 2,5-dianilino-p-benzoquinone-like moiety are observed even in the vibrational spectra of the sample prepared without addition of p-benzoquinone. This confirms in situ oxidation of aniline to p-benzoquinone within the course of the oxidation of aniline hydrochloride to PANI.
Collapse
Affiliation(s)
- Michal Bláha
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 06 Prague 6, Czech Republic
| | - Filip Marek
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 06 Prague 6, Czech Republic
| | - Zuzana Morávková
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 06 Prague 6, Czech Republic
| | - Jan Svoboda
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 06 Prague 6, Czech Republic
| | - Jiří Brus
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 06 Prague 6, Czech Republic
| | - Jiří Dybal
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 06 Prague 6, Czech Republic
| | - Jan Prokeš
- Faculty
of Mathematics and Physics, Charles University, 182 00 Prague 8, Czech Republic
| | - Martin Varga
- Faculty
of Mathematics and Physics, Charles University, 182 00 Prague 8, Czech Republic
| | - Jaroslav Stejskal
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, 162 06 Prague 6, Czech Republic
| |
Collapse
|