1
|
Imani Z, Mundlapati VR, Brenner V, Gloaguen E, Le Barbu-Debus K, Zehnacker-Rentien A, Robin S, Aitken DJ, Mons M. Non-covalent interactions reveal the protein chain δ conformation in a flexible single-residue model. Chem Commun (Camb) 2023; 59:1161-1164. [PMID: 36625351 DOI: 10.1039/d2cc06658k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The δ conformation is a local secondary structure in proteins that implicates a πamide N-H⋯N interaction between a backbone N atom and the NH of the following residue. Small-molecule models thereof have been limited so far to rigid proline-type compounds. We show here that in derivatives of a cyclic amino acid with a sulphur atom in the γ-position, specific side-chain/backbone N-H⋯S interactions stabilize the δ conformation sufficiently to allow it to compete with classical C5 and C7 H-bonded conformers.
Collapse
Affiliation(s)
- Zeynab Imani
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France
| | | | - Valérie Brenner
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette 91191, France
| | - Eric Gloaguen
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette 91191, France
| | | | | | - Sylvie Robin
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.,Université de Paris, Faculté de Pharmacie, Paris 75006, France
| | - David J Aitken
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France
| | - Michel Mons
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette 91191, France
| |
Collapse
|
2
|
O‧‧‧C═O interaction, its occurrence and implications for protein structure and folding. Proteins 2022; 90:1159-1169. [DOI: 10.1002/prot.26298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/07/2022]
|
3
|
Sahariah B, Sarma BK. Deciphering the Backbone Noncovalent Interactions that Stabilize Polyproline II Conformation and Reduce cis Proline Abundance in Polyproline Tracts. J Phys Chem B 2021; 125:13394-13405. [PMID: 34851647 DOI: 10.1021/acs.jpcb.1c07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proline (Pro) has a higher propensity to adopt cis amide geometry than the other natural amino acids, and a poly-Pro (poly-P) tract can adopt either a polyproline I (PPI, all cis amide) or a polyproline II (PPII, all trans amide) helical conformation. Recent studies have revealed a reduced abundance of cis amide geometry among the inner Pro residues of a poly-P tract. However, the forces that stabilize the polyproline helices and the reason for the higher trans amide propensity of the inner Pro residues of a poly-P tract are poorly understood. Herein, we have studied both Pro and non-Pro PPII helical sequences and identified the backbone noncovalent interactions that are crucial to the higher stability of the trans Pro-amide geometry and the preference for a PPII helical conformation. We show the presence of reciprocal CO···CO interactions that extend over the whole PPII helical region. Interestingly, the CO···CO interactions strengthen with the increase in the PPII helical chain length and the inner CO groups possess stronger CO···CO interactions, which could explain the reduced cis abundance of the inner Pro residues of a poly-P tract. We also identified a much stronger (∼0.9 kcal·mol-1) nO → σ*Cα-Cβ interaction between the N-terminal CO oxygen lone pair and the antibonding orbital (σ*) of their Cα-Cβ bonds. As the nO → σ*Cα-Cβ interaction is possible only in the trans isomers of Pro, this interaction should be crucial for the stabilization of a PPII helix. Finally, an unusual nN(amide) → σ*C-N interaction (∼0.3 kcal·mol-1) was observed between the peptidic nitrogen lone pair (nN) and the antibonding orbital (σ*C-N) of the subsequent C-terminal peptide C-N bond. We propose a cumulative effect of these interactions in the stabilization of a PPII helix.
Collapse
Affiliation(s)
- Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
4
|
Baruah K, Sahariah B, Sakpal SS, Deka JKR, Bar AK, Bagchi S, Sarma BK. Stabilization of Azapeptides by N amide···H-N amide Hydrogen Bonds. Org Lett 2021; 23:4949-4954. [PMID: 34060858 DOI: 10.1021/acs.orglett.1c01111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An unusual Namide···H-Namide hydrogen bond (HB) was previously proposed to stabilize the azapeptide β-turns. Herein we provide experimental evidence for the Namide···H-Namide HB and show that this HB endows a stabilization of 1-3 kcal·mol-1 and enforces the trans-cis-trans (t-c-t) and cis-cis-trans (c-c-t) amide bond conformations in azapeptides and N-methyl-azapeptides, respectively. Our results indicate that these Namide···H-Namide HBs can have stabilizing contributions even in short azapeptides that cannot fold to form β-turns.
Collapse
Affiliation(s)
- Kalpita Baruah
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, Karnataka 560064, India
| | - Sushil S Sakpal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Jugal Kishore Rai Deka
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Arun Kumar Bar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 501507, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, Karnataka 560064, India
| |
Collapse
|
5
|
Vennelakanti V, Qi HW, Mehmood R, Kulik HJ. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem Sci 2021; 12:1147-1162. [PMID: 35382134 PMCID: PMC8908278 DOI: 10.1039/d0sc05084a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrogen bonds (HBs) play an essential role in the structure and catalytic action of enzymes, but a complete understanding of HBs in proteins challenges the resolution of modern structural (i.e., X-ray diffraction) techniques and mandates computationally demanding electronic structure methods from correlated wavefunction theory for predictive accuracy. Numerous amino acid sidechains contain functional groups (e.g., hydroxyls in Ser/Thr or Tyr and amides in Asn/Gln) that can act as either HB acceptors or donors (HBA/HBD) and even form simultaneous, ambifunctional HB interactions. To understand the relative energetic benefit of each interaction, we characterize the potential energy surfaces of representative model systems with accurate coupled cluster theory calculations. To reveal the relationship of these energetics to the balance of these interactions in proteins, we curate a set of 4000 HBs, of which >500 are ambifunctional HBs, in high-resolution protein structures. We show that our model systems accurately predict the favored HB structural properties. Differences are apparent in HBA/HBD preference for aromatic Tyr versus aliphatic Ser/Thr hydroxyls because Tyr forms significantly stronger O–H⋯O HBs than N–H⋯O HBs in contrast to comparable strengths of the two for Ser/Thr. Despite this residue-specific distinction, all models of residue pairs indicate an energetic benefit for simultaneous HBA and HBD interactions in an ambifunctional HB. Although the stabilization is less than the additive maximum due both to geometric constraints and many-body electronic effects, a wide range of ambifunctional HB geometries are more favorable than any single HB interaction. Correlated wavefunction theory predicts and high-resolution crystal structure analysis confirms the important, stabilizing effect of simultaneous hydrogen bond donor and acceptor interactions in proteins.![]()
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Helena W. Qi
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Rimsha Mehmood
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
6
|
Mandal SK, Guillot B, Munshi P. Electron density based analysis of N–H⋯OC hydrogen bonds and electrostatic interaction energies in high-resolution secondary protein structures: insights from quantum crystallographic approaches. CrystEngComm 2020. [DOI: 10.1039/d0ce00577k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limiting values of the topological parameters and the electrostatic interaction energies to establish the presence of true N–H⋯OC H-bonds in protein main-chain have been identified using quantitative and qualitative analyses of electron densities.
Collapse
Affiliation(s)
- Suman K. Mandal
- Chemical and Biological Crystallography Laboratory
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- Dadri
| | - Benoît Guillot
- Laboratoire de Cristallographie
- Institut Jean Barriol
- Université de Lorraine
- Nancy 54000
- France
| | - Parthapratim Munshi
- Chemical and Biological Crystallography Laboratory
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- Dadri
| |
Collapse
|
7
|
Dhar J, Kishore R, Chakrabarti P. Delineation of a new structural motif involving NHN γ-turn. Proteins 2019; 88:431-439. [PMID: 31587358 DOI: 10.1002/prot.25820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
Macromolecules are characterized by distinctive arrangement of hydrogen bonds. Different patterns of hydrogen bonds give rise to distinct and stable structural motifs. An analysis of 4114 non-redundant protein chains reveals the existence of a three-residue, (i - 1) to (i + 1), structural motif, having two hydrogen-bonded five-membered pseudo rings (the first, an NH···OC involving the first residue, and the second being NH∙∙∙N involving the last two residues), separated by a peptide bond. There could be an additional hydrogen bond between the side-chain at (i-1) and the main-chain NH of (i + 1). The average backbone torsion angles of -76(±21)° and - 12(±17)° at i creates a tight turn in the polypeptide chain, akin to a γ-turn. Indeed, a search of three-residue fragments with restriction on the terminal Cα ···Cα distance and the existence of the two pseudo rings on either side revealed the presence 14 846 cases of a variant, termed NHN γ-turn, distinct from the NHO γ-turn (2032 cases) that has traditionally been characterized by the presence of NHO hydrogen bond linking the terminal main-chain atoms. As in the latter, the newly identified γ-turns are also of two types-classical and inverse, occurring in the ratio of 1:6. The propensities of residues to occur in these turns and their secondary structural features have been enumerated. An understanding of these turns would be useful for structure prediction and loop modeling, and may serve as models to represent some of the unfolded state or disordered region in proteins.
Collapse
Affiliation(s)
- Jesmita Dhar
- Bioinformatics Centre, Bose Institute, Kolkata, India
| | - Raghuvansh Kishore
- Department of Zoology and Department of Biotechnology, Mizoram University, Aizawl, India
| | - Pinak Chakrabarti
- Bioinformatics Centre, Bose Institute, Kolkata, India.,Department of Biochemistry, Bose Institute, Kolkata, India
| |
Collapse
|
8
|
Qi HW, Kulik HJ. Evaluating Unexpectedly Short Non-covalent Distances in X-ray Crystal Structures of Proteins with Electronic Structure Analysis. J Chem Inf Model 2019; 59:2199-2211. [DOI: 10.1021/acs.jcim.9b00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Helena W. Qi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|