Mateos-Gil J, Calbo J, Rodríguez-Pérez L, Ángeles Herranz M, Ortí E, Martín N. Carbon Nanotubes Conjugated with Triazole-Based Tetrathiafulvalene-Type Receptors for C
60 Recognition.
Chempluschem 2020;
84:730-739. [PMID:
31944013 DOI:
10.1002/cplu.201900078]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Fullerene receptors prepared by a twofold CuI -catalyzed azide-alkyne cycloaddition reaction with π-extended tetrathiafulvalene (exTTF) have been covalently linked to single-walled carbon nanotubes and multi-walled carbon nanotubes. The nanoconjugates obtained were characterized by several analytical, spectroscopic and microscopic techniques (TEM, FTIR, Raman, TGA and XPS), and evaluated as C60 receptors by using UV-Vis spectroscopy. The complexation between the exTTF-triazole receptor in the free state and C60 was also studied by UV-Vis and 1 H NMR titrations, and compared with analogous triazole-based tweezer-type receptors containing the electron-acceptor 11,11,12,12-tetracyano-9,10-anthraquinodimethane and benzene rings instead of exTTF motifs, providing in all cases very similar values for the association constant (log Ka ≈3.0-3.1). Theoretical density functional theory calculations demonstrated that the enhanced interaction between the host and the guest upon increasing the size of the π-conjugated arms of the tweezer is compensated by an increase in the energy penalty needed to distort the geometry of the host to wrap C60 .
Collapse