1
|
Tolu D, Guillaumont D, de la Lande A. Irradiation of Plutonium Tributyl Phosphate Complexes by Ionizing Alpha Particles: A Computational Study. J Phys Chem A 2023; 127:7045-7057. [PMID: 37606197 DOI: 10.1021/acs.jpca.3c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The PUREX solvent extraction process, widely used for recovering uranium and plutonium from spent nuclear fuel, utilizes an organic solvent composed of tributyl phosphate (TBP). The emission of ionizing particles such as alpha particles, resulting from the decay of plutonium, makes the organic solvent vulnerable to degradation. Here, we study the ultrashort time alpha irradiation of tributylphosphate (TBP) and Pu(NO3)4(TBP)2 complex formed in the PUREX process. Electron dynamics is propagated by Real-Time-Dependent Auxiliary Density Functional Theory (RT-TD-ADFT). We investigate the use of previously proposed absorption boundary conditions (ABC) in the molecular orbital space to treat secondary electron emission. Basis set and exchange correlation functional effects with ABC are reported as well as a detailed analysis of the ABC parametrization. Preliminary results on the water molecule and then on TBP show that the phenomenological nature of the ABC parameters necessitates selecting appropriate values for each system under study. Irradiation of free and complexed TBP shows an influence of the ligands on the variation of atomic charges on the femtosecond time scale. An accumulation of atomic charges in the alkyl chains of TBP is observed in the case where the nitrate groups are predominantly irradiated. In addition, we find that the Pu atom regains its electric charge very rapidly after being hit by the projectile, with the coordination sphere serving as an electron reservoir to preserve its formal redox state. This study paves the road toward a full understanding of the degradation of organic extracants employed in the nuclear industry.
Collapse
Affiliation(s)
- Damien Tolu
- CEA, DES, ISEC, DMRC, Université Montpellier, Marcoule, 30207 Bagnols sur Cèze, France
- Institut de Chimie Physique, CNRS, Université Paris Saclay, 15 Avenue Jean Perrin, Paris, 91405, France
| | - Dominique Guillaumont
- CEA, DES, ISEC, DMRC, Université Montpellier, Marcoule, 30207 Bagnols sur Cèze, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS, Université Paris Saclay, 15 Avenue Jean Perrin, Paris, 91405, France
| |
Collapse
|
2
|
Abstract
This Perspective attempts to shed light on developments in the theoretical and experimental study of molecular anions highlighting more recent workers in the field. The species I discuss include (i) valence-bound (singly and multiply charged) anions including atmospheric, catalytic, superhalogen, interfacial, and more; (ii) dipole- and correlation-bound anions including their role as doorways to other states and their appearance "in space", and (iii) metastable anions focusing on tools needed for their theoretical treatment. I also briefly discuss angular distributions of photodetached electrons and their growing utilization in experiments and theory. A recurring theme is the dependence of electron binding energies (EBEs) on the surrounding environment. Some anions that are nonexistent as isolated species evolve to be stable but with small EBEs when weakly solvated (e.g., as in a cluster or at an air-solvent interface). Others existing in isolation only as metastable species become stable when the underlying molecular framework contains one or more positively charged group (e.g., protonated side chains in a peptide) that generates a stabilizing Coulomb potential. On the other hand, a destabilizing Coulomb potential between/among negative sites in a multiply charged anion decreases the EBEs of each such site and generates a repulsive Coulomb barrier that can affect stability.
Collapse
Affiliation(s)
- Jack Simons
- Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Dobulis MA, Thompson MC, Sommerfeld T, Jarrold CC. Temporary anion states of fluorine substituted benzenes probed by charge transfer in O 2 -·C 6H 6-xF x (x = 0-5) ion-molecule complexes. J Chem Phys 2020; 152:204309. [PMID: 32486698 DOI: 10.1063/5.0011321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The broadband photoelectron source realized by detaching O2 -·X (X = neutral unsaturated molecule) complexes offers a unique opportunity to probe temporary anion states of the unsaturated species. Detachment of the ion molecule complex typically accesses a dissociative portion of the neutral potential, creating a continuum electron source that can undergo scattering with X. We present the application of this new approach to electron-neutral scattering toward a study of the series of fluorinated benzenes via photoelectron spectroscopy of O2 -·C6H6-xFx (x = 0-6) measured with several photon energies. We compare these spectra to the reference O2 -·hexane spectrum and observe evidence of temporary anion states of C6H6-xFx for species with x = 0-5 in the form of enhanced signal intensity at electron kinetic energies coinciding with the energies of the temporary anions. Furthermore, we observe autodetachment features in the x = 3, 5 spectra. Results of calculations on the isolated symmetric isomer of C6H3F3 suggest that the molecule cannot support a weakly-bound non-valence state that could be associated with the observed autodetachment. However, C6HF5 - is predicted to support a valence bound state, which, if produced by charge transfer from O2 - with sufficient vibrational energy, may undergo autodetachment. Finally, the [O2·C6F6]- spectrum is unique insofar as the spectrum is substantially higher in binding energy and qualitatively different from the x = 0-5 spectra. This result suggests much stronger interactions and charge delocalization between O2 - and C6F6.
Collapse
Affiliation(s)
- Marissa A Dobulis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Michael C Thompson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Thomas Sommerfeld
- Department of Chemistry and Physics, Southeast Louisiana University, SLU 10878, Hammond, Louisiana 70402, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
4
|
Phung QM, Komori Y, Yanai T, Sommerfeld T, Ehara M. Combination of a Voronoi-Type Complex Absorbing Potential with the XMS-CASPT2 Method and Pilot Applications. J Chem Theory Comput 2020; 16:2606-2616. [PMID: 32105477 DOI: 10.1021/acs.jctc.9b01032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electronic resonances are metastable (N + 1) electron states, in other words, discrete states embedded in an electronic continuum. While great progress has been made for certain types of resonances-for example, temporary anions created by attaching one excess electron to a closed shell neutral-resonances in general remain a great challenge of quantum chemistry because a successful description of the decay requires a balanced description of the bound and continuum aspect of the resonance. Here, a smoothed Voronoi complex absorbing potential (CAP) is combined with the XMS-CASPT2 method, which enables us to address the balance challenge by appropriate choice of the CAS space. To reduce the computational cost, the method is implemented in the projected scheme. In this pilot application, three temporary anions serve as benchmarks: the π* resonance state of formaldehyde; the π* and σ* resonance states of chloroethene as functions of the C-Cl bond dissociation coordinate; and the 4Πu and 2Πu resonance states of N2-. The convergence of the CAP/XMS-CASPT2 results has been systematically examined with respect to the size of the active space. Resonance parameters predicted by the CAP/XMS-CASPT2 method agree well with CAP/SAC-CI results (deviations of about 0.15 eV); however, as expected, CAP/XMS-CASPT2 has clear advantages in the bond dissociation region. The advantages of CAP/XMS-CASPT2 are further demonstrated in the calculations of 4Πu and 2Πu resonance states of N2- including their 3Σu+ and 3Δu parent states. Three of the involved states (2Πu, 3Σu+, and 3Δu) possess multireference character, and CAP/XMS-CASPT2 can easily describe these states with a relatively modest active space.
Collapse
Affiliation(s)
- Quan Manh Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuki Komori
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Thomas Sommerfeld
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, Louisiana 70402, United States
| | - Masahiro Ehara
- Institute for Molecular Science and Research Center for Computational Science, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
5
|
Landau A, Haritan I. The Clusterization Technique: A Systematic Search for the Resonance Energies Obtained via Padé. J Phys Chem A 2019; 123:5091-5105. [DOI: 10.1021/acs.jpca.8b12573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arie Landau
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Idan Haritan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|