1
|
Goettl SJ, Yang Z, He C, Somani A, Portela-Gonzalez A, Sander W, Mebel AM, Kaiser RI. Exploring the chemical dynamics of phenanthrene (C 14H 10) formation via the bimolecular gas-phase reaction of the phenylethynyl radical (C 6H 5CC) with benzene (C 6H 6). Faraday Discuss 2024; 251:509-522. [PMID: 38766758 DOI: 10.1039/d3fd00159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The exploration of the fundamental formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) is crucial for the understanding of molecular mass growth processes leading to two- and three-dimensional carbonaceous nanostructures (nanosheets, graphenes, nanotubes, buckyballs) in extraterrestrial environments (circumstellar envelopes, planetary nebulae, molecular clouds) and combustion systems. While key studies have been conducted exploiting traditional, high-temperature mechanisms such as the hydrogen abstraction-acetylene addition (HACA) and phenyl addition-dehydrocyclization (PAC) pathways, the complexity of extreme environments highlights the necessity of investigating chemically diverse mass growth reaction mechanisms leading to PAHs. Employing the crossed molecular beams technique coupled with electronic structure calculations, we report on the gas-phase synthesis of phenanthrene (C14H10)-a three-ring, 14π benzenoid PAH-via a phenylethynyl addition-cyclization-aromatization mechanism, featuring bimolecular reactions of the phenylethynyl radical (C6H5CC, X2A1) with benzene (C6H6) under single collision conditions. The dynamics involve a phenylethynyl radical addition to benzene without entrance barrier leading eventually to phenanthrene via indirect scattering dynamics through C14H11 intermediates. The barrierless nature of reaction allows rapid access to phenanthrene in low-temperature environments such as cold molecular clouds which can reach temperatures as low as 10 K. This mechanism constitutes a unique, low-temperature framework for the formation of PAHs as building blocks in molecular mass growth processes to carbonaceous nanostructures in extraterrestrial environments thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.
Collapse
Affiliation(s)
- Shane J Goettl
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| | - Zhenghai Yang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| | - Chao He
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| | - Ankit Somani
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | | | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
2
|
Medvedkov IA, Nikolayev AA, Yang Z, Goettl SJ, Mebel AM, Kaiser RI. Elucidating the chemical dynamics of the elementary reactions of the 1-propynyl radical (CH 3CC; X 2A 1) with 2-methylpropene ((CH 3) 2CCH 2; X 1A 1). Phys Chem Chem Phys 2024; 26:6448-6457. [PMID: 38319693 DOI: 10.1039/d3cp05872g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Exploiting the crossed molecular beam technique, we studied the reaction of the 1-propynyl radical (CH3CC; X2A1) with 2-methylpropene (isobutylene; (CH3)2CCH2; X1A1) at a collision energy of 38 ± 3 kJ mol-1. The experimental results along with ab initio and statistical calculations revealed that the reaction has no entrance barrier and proceeds via indirect scattering dynamics involving C7H11 intermediates with lifetimes longer than their rotation period(s). The reaction is initiated by the addition of the 1-propynyl radical with its radical center to the π-electron density at the C1 and/or C2 position in 2-methylpropene. Further, the C7H11 intermediate formed from the C1 addition either emits atomic hydrogen or undergoes isomerization via [1,2-H] shift from the CH3 or CH2 group prior to atomic hydrogen loss preferentially leading to 1,2,4-trimethylvinylacetylene (2-methylhex-2-en-4-yne) as the dominant product. The molecular structures of the collisional complexes promote hydrogen atom loss channels. RRKM results show that hydrogen elimination channels dominate in this reaction, with a branching ratio exceeding 70%. Since the reaction of the 1-propynyl radical with 2-methylpropene has no entrance barrier, is exoergic, and all transition states involved are located below the energy of the separated reactants, bimolecular collisions are feasible to form trimethylsubstituted 1,3-enyne (p1) via a single collision event even at temperatures as low as 10 K prevailing in cold molecular clouds such as G+0.693. The formation of trimethylsubstituted vinylacetylene could serve as the starting point of fundamental molecular mass growth processes leading to di- and trimethylsubstituted naphthalenes via the HAVA mechanism.
Collapse
Affiliation(s)
- Iakov A Medvedkov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | | | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Shane J Goettl
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
3
|
Medvedkov IA, Nikolayev AA, He C, Yang Z, Mebel AM, Kaiser RI. One Collision-Two Substituents: Gas-Phase Preparation of Xylenes under Single-Collision Conditions. Angew Chem Int Ed Engl 2023:e202315147. [PMID: 38072833 DOI: 10.1002/anie.202315147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/21/2023]
Abstract
The fundamental reaction pathways to the simplest dialkylsubstituted aromatics-xylenes (C6 H4 (CH3 )2 )-in high-temperature combustion flames and in low-temperature extraterrestrial environments are still unknown, but critical to understand the chemistry and molecular mass growth processes in these extreme environments. Exploiting crossed molecular beam experiments augmented by state-of-the-art electronic structure and statistical calculations, this study uncovers a previously elusive, facile gas-phase synthesis of xylenes through an isomer-selective reaction of 1-propynyl (methylethynyl, CH3 CC) with 2-methyl-1,3-butadiene (isoprene, C5 H8 ). The reaction dynamics are driven by a barrierless addition of the radical to the diene moiety of 2-methyl-1,3-butadiene followed by extensive isomerization (hydrogen shifts, cyclization) prior to unimolecular decomposition accompanied by aromatization via atomic hydrogen loss. This overall exoergic reaction affords a preparation of xylenes not only in high-temperature environments such as in combustion flames and around circumstellar envelopes of carbon-rich Asymptotic Giant Branch (AGB) stars, but also in low-temperature cold molecular clouds (10 K) and in hydrocarbon-rich atmospheres of planets and their moons such as Triton and Titan. Our study established a hitherto unknown gas-phase route to xylenes and potentially more complex, disubstituted benzenes via a single collision event highlighting the significance of an alkyl-substituted ethynyl-mediated preparation of aromatic molecules in our Universe.
Collapse
Affiliation(s)
- Iakov A Medvedkov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | | | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Nikolayev AA, Azyazov VN, Kaiser RI, Mebel AM. Theoretical Study of the Reaction of the Methylidyne Radical (CH; X 2Π) with 1-Butyne (CH 3CH 2CCH; X 1A'). J Phys Chem A 2021; 125:9536-9547. [PMID: 34672597 DOI: 10.1021/acs.jpca.1c07519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ab initio CCSD(T)-F12/cc-pVTZ-f12//ωB97X-D/6-311G(d,p) + ZPE[ωB97X-D/6-311G(d,p)] calculations were carried out to unravel the area of the C5H7 potential energy surface accessed by the reaction of the methylidyne radical with 1-butyne. The results were utilized in Rice-Ramsperger-Kassel-Marcus calculations of the product branching ratios at the zero pressure limit. The preferable reaction mechanism has been shown to involve (nearly) instantaneous decomposition of the initial reaction adducts, whose structures are controlled by the isomeric form of the C4H6 reactant. If CH adds to the triple C≡C bond in the entrance reaction channel, the reaction is predicted to predominantly form the methylenecyclopropene + methyl (CH3) and cyclopropenylidene + ethyl (C2H5) products roughly in a 2:1 ratio. CH insertion into a C-H bond in the methyl group of 1-butyne is anticipated to preferentially form ethylene + propargyl (C3H3) by the C-C bond β-scission in the initial complex, whereas CH insertion into C-H of the CH2 group would predominantly produce vinylacetylene + methyl (CH3) also by the C-C bond β-scission in the adduct. The barrierless and highly exoergic CH + 1-butyne reaction, facile in cold molecular clouds, is not likely to lead to the carbon skeleton molecular growth but generates C4H4 isomers methylenecyclopropene, vinylacetylene, and 1,2,3-butatriene and smaller C2 and C3 hydrocarbons such as methyl, ethyl, and propargyl radicals, ethylene, and cyclopropenylidene.
Collapse
Affiliation(s)
- Anatoliy A Nikolayev
- Lebedev Physical Institute, Samara 443011, Russian Federation.,Samara National Research University, Samara 443086, Russian Federation
| | - Valeriy N Azyazov
- Lebedev Physical Institute, Samara 443011, Russian Federation.,Samara National Research University, Samara 443086, Russian Federation
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
5
|
Zhang R, Wang M, Chen X, Yang C, Wu L. Combined toxicity of microplastics and cadmium on the zebrafish embryos (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140638. [PMID: 32679492 DOI: 10.1016/j.scitotenv.2020.140638] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The effects of microplastics (MPs) on organisms have drawn a worldwide attention in the recent years. In this study, zebrafish embryos were employed to assess the combined effects of MPs and cadmium (Cd) on the aquatic organisms. Lethal and sublethal effects were recorded at 8, 24, 32, 48 and 96 hpe (hour post exposure, hpe). The exposure under a series concentration of MPs and/or an environmental level Cd has the negative impacts on survival and heart rate (HR). And there was a positive correlation between MPs concentration and lethal and sublethal toxicity under combined exposure. The physiological parameters showed that the mixture of two stressors had the antagonistic toxicity under low concentration of MPs (0.05, 0.1 mg/L) while the synergistic sublethal toxicity under high levels of MPs (1, 5, 10 mg/L) on zebrafish embryos. Both the scanning electron micrographs (SEM) and fluorescence microscope photos suggested an electrostatic interaction and weak physical forces generated between MPs and chorion membrane. It is inferred that the 10 μm MPs could induce the protective effect of chorion membrane and cause complex toxicities with Cd. But when it involved with other pollutants, the toxic effects and mechanism are still waiting to be figured out.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Meng Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoping Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
6
|
He C, Zhao L, Doddipatla S, Thomas AM, Nikolayev AA, Galimova GR, Azyazov VN, Mebel AM, Kaiser RI. Gas-Phase Synthesis of 3-Vinylcyclopropene via the Crossed Beam Reaction of the Methylidyne Radical (CH; X 2 Π) with 1,3-Butadiene (CH 2 CHCHCH 2 ; X 1 A g ). Chemphyschem 2020; 21:1295-1309. [PMID: 32291897 DOI: 10.1002/cphc.202000183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The crossed molecular beam reactions of the methylidyne radical (CH; X2 Π) with 1,3-butadiene (CH2 CHCHCH2 ; X1 Ag ) along with their (partially) deuterated counterparts were performed at collision energies of 20.8 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio calculations, we reveal that the methylidyne radical may add barrierlessly to the terminal carbon atom and/or carbon-carbon double bond of 1,3-butadiene, leading to doublet C5 H7 intermediates with life times longer than the rotation periods. These collision complexes undergo non-statistical unimolecular decomposition through hydrogen atom emission yielding the cyclic cis- and trans-3-vinyl-cyclopropene products with reaction exoergicities of 119±42 kJ mol-1 . Since this reaction is barrierless, exoergic, and all transition states are located below the energy of the separated reactants, these cyclic C5 H6 products are predicted to be accessed even in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and cold molecular clouds such as TMC-1.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | | | - Galiya R Galimova
- Samara National Research University, Samara, 443086, Russian Federation.,Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Valeriy N Azyazov
- Samara National Research University, Samara, 443086, Russian Federation.,Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
7
|
A Barrierless Pathway Accessing the C 9H 9 and C 9H 8 Potential Energy Surfaces via the Elementary Reaction of Benzene with 1-Propynyl. Sci Rep 2019; 9:17595. [PMID: 31772216 PMCID: PMC6879741 DOI: 10.1038/s41598-019-53987-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
The crossed molecular beams reactions of the 1-propynyl radical (CH3CC; X2A1) with benzene (C6H6; X1A1g) and D6-benzene (C6D6; X1A1g) were conducted to explore the formation of C9H8 isomers under single-collision conditions. The underlying reaction mechanisms were unravelled through the combination of the experimental data with electronic structure and statistical RRKM calculations. These data suggest the formation of 1-phenyl-1-propyne (C6H5CCCH3) via the barrierless addition of 1-propynyl to benzene forming a low-lying doublet C9H9 intermediate that dissociates by hydrogen atom emission via a tight transition state. In accordance with our experiments, RRKM calculations predict that the thermodynamically most stable isomer – the polycyclic aromatic hydrocarbon (PAH) indene – is not formed via this reaction. With all barriers lying below the energy of the reactants, this reaction is viable in the cold interstellar medium where several methyl-substituted molecules have been detected. Its underlying mechanism therefore advances our understanding of how methyl-substituted hydrocarbons can be formed under extreme conditions such as those found in the molecular cloud TMC-1. Implications for the chemistry of the 1-propynyl radical in astrophysical environments are also discussed.
Collapse
|
8
|
He C, Zhao L, Thomas AM, Galimova GR, Mebel AM, Kaiser RI. A combined experimental and computational study on the reaction dynamics of the 1-propynyl radical (CH 3CC; X 2A 1) with ethylene (H 2CCH 2; X 1A 1g) and the formation of 1-penten-3-yne (CH 2CHCCCH 3; X 1A'). Phys Chem Chem Phys 2019; 21:22308-22319. [PMID: 31576858 DOI: 10.1039/c9cp04073k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crossed molecular beam reactions of the 1-propynyl radical (CH3CC; X2A1) with ethylene (H2CCH2; X1A1g) and ethylene-d4 (D2CCD2; X1A1g) were performed at collision energies of 31 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio electronic structure and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations, we reveal that the reaction is initiated by the barrierless addition of the 1-propynyl radical to the π-electron density of the unsaturated hydrocarbon of ethylene leading to a doublet C5H7 intermediate(s) with a life time(s) longer than the rotation period(s). The reaction eventually produces 1-penten-3-yne (p1) plus a hydrogen atom with an overall reaction exoergicity of 111 ± 16 kJ mol-1. About 35% of p1 originates from the initial collision complex followed by C-H bond rupture via a tight exit transition state located 22 kJ mol-1 above the separated products. The collision complex (i1) can also undergo a [1,2] hydrogen atom shift to the CH3CHCCCH3 intermediate (i2) prior to a hydrogen atom release; RRKM calculations suggest that this pathway contributes to about 65% of p1. In higher density environments such as in combustion flames and circumstellar envelopes of carbon stars close to the central star, 1-penten-3-yne (p1) may eventually form the cyclopentadiene (c-C5H6) isomer via hydrogen atom assisted isomerization followed by hydrogen abstraction to the cyclopentadienyl radical (c-C5H5) as an important pathway to key precursors to polycyclic aromatic hydrocarbons (PAHs) and to carbonaceous nanoparticles.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA. and Samara National Research University, Samara 443086, Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA. and Samara National Research University, Samara 443086, Russia
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
9
|
He C, Zhao L, Thomas AM, Morozov AN, Mebel AM, Kaiser RI. Elucidating the Chemical Dynamics of the Elementary Reactions of the 1-Propynyl Radical (CH3CC; X2A1) with Methylacetylene (H3CCCH; X1A1) and Allene (H2CCCH2; X1A1). J Phys Chem A 2019; 123:5446-5462. [DOI: 10.1021/acs.jpca.9b03746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Long Zhao
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Aaron M. Thomas
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Alexander N. Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
10
|
Thomas AM, He C, Zhao L, Galimova GR, Mebel AM, Kaiser RI. Combined Experimental and Computational Study on the Reaction Dynamics of the 1-Propynyl (CH 3CC)-1,3-Butadiene (CH 2CHCHCH 2) System and the Formation of Toluene under Single Collision Conditions. J Phys Chem A 2019; 123:4104-4118. [PMID: 31017790 DOI: 10.1021/acs.jpca.9b00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crossed beams reactions of the 1-propynyl radical (CH3CC; X2A1) with 1,3-butadiene (CH2CHCHCH2; X1Ag), 1,3-butadiene- d6 (CD2CDCDCD2; X1Ag), 1,3-butadiene- d4 (CD2CHCHCD2; X1Ag), and 1,3-butadiene- d2 (CH2CDCDCH2; X1Ag) were performed under single collision conditions at collision energies of about 40 kJ mol-1. The underlying reaction mechanisms were unraveled through the combination of the experimental data with electronic structure calculations at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) + ZPE(B3LYP/6-311G(d,p) level of theory along with statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. Together, these data suggest the formation of the thermodynamically most stable C7H8 isomer-toluene (C6H5CH3)-via the barrierless addition of 1-propynyl to the 1,3-butadiene terminal carbon atom, forming a low-lying C7H9 intermediate that undergoes multiple isomerization steps resulting in cyclization and ultimately aromatization following hydrogen atom elimination. RRKM calculations predict that the thermodynamically less stable isomers 1,3-heptadien-5-yne, 5-methylene-1,3-cyclohexadiene, and 3-methylene-1-hexen-4-yne are also synthesized. Since the 1-propynyl radical may be present in cold molecular clouds such as TMC-1, this pathway could potentially serve as a carrier of the methyl group incorporating itself into methyl-substituted (poly)acetylenes or aromatic systems such as toluene via overall exoergic reaction mechanisms that are uninhibited by an entrance barrier. Such pathways are a necessary alternative to existing high energy reactions leading to toluene that are formally closed in the cold regions of space and are an important step toward understanding the synthesis of polycyclic aromatic hydrocarbons (PAHs) in space's harsh extremes.
Collapse
Affiliation(s)
- Aaron M Thomas
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Chao He
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Long Zhao
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States.,Samara National Research University , Samara 443086 , Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|