1
|
Gweme DT, Styler SA. OH Radical Oxidation of Organosulfates in the Atmospheric Aqueous Phase. J Phys Chem A 2024; 128:9462-9475. [PMID: 39432465 DOI: 10.1021/acs.jpca.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Organosulfates (OS, ROSO3-), ubiquitous constituents of atmospheric particulate matter (PM), influence both the physicochemical and climatic properties of PM. Although the formation pathways of OS have been extensively researched, only a few studies have investigated the atmospheric fate of this class of compounds. Here, to better understand the reactivity and transformation of OS under cloudwater- and aerosol-relevant conditions, we investigate the hydroxyl radical (OH) oxidation bimolecular rate constants (kOS+OHII) and products of five atmospherically relevant OS as a function of pH and ionic strength: methyl sulfate (MeS), ethyl sulfate (EtS), propyl sulfate (PrS), hydroxyacetone sulfate (HaS) and phenyl sulfate (PhS). Our results show that OS are oxidized by OH with kOS+OHII between 108 - 109 M-1 s-1, which corresponds to atmospheric lifetimes of minutes in aqueous aerosol to days in cloudwater. We find that kOS+OHII increases with carbon chain length (MeS < EtS < PrS) and aromaticity (PrS < PhS), but does not depend on solution pH (2, 9). In addition, we find that whereas the OH reactivity of the aliphatic OS studied here decreases by ∼2× with increasing ionic strength (0-15 M), the reactivity of PhS decreases by ∼10×. The oxidation of EtS and PrS produced organic peroxides (ROOH) as first-generation oxidation products, which subsequently photolyzed; the oxidation of PhS resulted in hydroxylated aromatic products. These results highlight the need for inclusion of OS loss pathways in atmospheric models, and suggest caution in using ambient OS concentration measurements alone to estimate their production rates.
Collapse
Affiliation(s)
- Daniel T Gweme
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah A Styler
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Golin Almeida T, Martí C, Kurtén T, Zádor J, Johansen SL. Theoretical analysis of the OH-initiated atmospheric oxidation reactions of imidazole. Phys Chem Chem Phys 2024; 26:23570-23587. [PMID: 39106054 DOI: 10.1039/d4cp02103g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Imidazoles are present in Earth's atmosphere in both the gas-phase and in aerosol particles, and have been implicated in the formation of brown carbon aerosols. The gas-phase oxidation of imidazole (C3N2H4) by hydroxyl radicals has been shown to be preferentially initiated via OH-addition to position C5, producing the 5-hydroxyimidazolyl radical adduct. However, the fate of this adduct upon reaction with O2 in the atmospheric gas-phase is currently unknown. We employed an automated approach to investigate the reaction mechanism and kinetics of imidazole's OH-initiated gas-phase oxidation, in the presence of O2 and NOx. The explored mechanism included reactions available to first-generation RO2 radicals, as well as alkoxyl radicals produced from RO2 + NO reactions. Product distributions were obtained by assembling and solving a master equation, under conditions relevant to the Earth's atmosphere. Our calculations show a complex, branched reaction mechanism, which nevertheless converges to yield two major closed-shell products: 4H-imidazol-4-ol (4H-4ol) and N,N'-diformylformamidine (FMF). At 298 K and 1 atm, we estimate the yields of 4H-4ol and FMF from imidazole oxidation initiated via OH-addition to position C5 to be 34 : 66, 12 : 85 and 2 : 95 under 10 ppt, 100 ppt and 1 ppb of NO respectively. This work also revealed O2-migration pathways between the α-N-imino peroxyl radical isomers. This reaction channel is fast for the first-generation RO2 radicals, and may be important during the atmospheric oxidation of other unsaturated organic nitrogen compounds as well.
Collapse
Affiliation(s)
- Thomas Golin Almeida
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research/Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research/Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| | - Sommer L Johansen
- Combustion Research Facility, Sandia National Laboratories, Livermore 94550, California, USA.
| |
Collapse
|
3
|
Wang Y, Kong L, Tan J, Liu B, An Y, Xia L, Lu Y, Li Q, Wang L. Photochemistry of Imidazole-2-carbaldehyde in Droplets as a Potential Source of H 2O 2 and Its Oxidation of SO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11096-11104. [PMID: 38865480 DOI: 10.1021/acs.est.3c11113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role as an oxidizing agent within the tropospheric environment, making a substantial contribution to sulfate formation in hydrated aerosols and cloud and fog droplets. Field observations show that high levels of H2O2 are often observed in heavy haze events and polluted air. However, the source of H2O2 remains unclear. Here, using the droplets formed in situ by the deliquescence of hygroscopic compounds under a high relative humidity (RH), the formation of H2O2 by the photochemistry of imidazole-2-carbaldehyde (2-IC) under ultraviolet irradiation was explored. The results indicate that 2-IC produces IM-C•-OH and IM-C•═O radicals via H transfer itself to its excited triplet state and generates H2O2 and organic peroxides in the presence of O2, which has an evident oxidizing effect on SO2, suggesting the potential involvement of this pathway in the formation of atmospheric sulfate. H2O2 formation is limited in acidic droplets or droplets containing ammonium ions, and no H2O2 is detected in droplets containing nitrate, whereas droplets containing citric acid have an obvious promotion effect on H2O2 formation. These findings provide valuable insights into the behaviors of atmospheric photosensitizers, the source of H2O2, and the formation of sulfate in atmospheric droplets.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jie Tan
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Beibei Liu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yixuan An
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yu Lu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Qing Li
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
4
|
Huang B, Zhang T, Zhao X, Yuan Y, Du Y, Xue J. Structure and Electron Configuration of Imidazole-2-carboxaldehyde and Its Excited Triplet: Resonance Raman and Transient Absorption Spectroscopy and DFT Calculation Investigations. J Phys Chem A 2023; 127:10008-10015. [PMID: 37971400 DOI: 10.1021/acs.jpca.3c06750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Imidazole-2-carboxaldehyde (IC) can be generated in atmospheric waters and absorbs solar radiation in the near UV region to produce its excited triplet state (3IC), which contributes to the formation of a secondary organic aerosol (SOA). The photoreactivity of IC is significantly influenced by its surroundings, such as water and acidic environment, because IC is capable of transforming into gem-diol under above conditions. Meanwhile, the electron configuration of 3IC is critical in elucidating the reaction mechanism of 3IC with other anthropogenic and biogenic volatile organic compounds (VOCs). In this study, steady-state and time-resolved resonance Raman as well as transient absorption spectroscopic experiments were conducted to provide vibrational and kinetic information on IC and 3IC in the presence of water and acid conditions. Using density functional theory (DFT) calculations, the H-bonding at the carbonyl O was confirmed and the hydrated structure of IC and 3IC was determined. 1,4-Cyclohexadiene is a good hydrogen donor, and it has a second-order rate constant of ∼107 M-1 s-1 toward 3IC. The results of CASSCF calculations suggest that the hydrogen abstraction may involve the transition from the ππ* to nπ* triplet state via the surface-crossing point.
Collapse
Affiliation(s)
- Baohua Huang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Tengshuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoyuan Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yuwei Yuan
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yong Du
- Center for THz Research, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jiadan Xue
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
5
|
Sahoo G, Jeong HS, Jeong SM. Ligand-Controlled Growth of Different Morphological Bimetallic Metal-Organic Frameworks for Enhanced Charge-Storage Performance and Quasi-Solid-State Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21097-21111. [PMID: 37075253 DOI: 10.1021/acsami.3c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present research work facilitates a ligand-mediated effective strategy to achieve different morphological surface structures of bimetallic (Ni and Co) metal-organic frameworks (MOFs) by utilizing different types of organic ligands like terephthalic acid (BDC), 2-methylimidazole (2-Melm), and trimesic acid (BTC). Different morphological structures, rectangular-like nanosheets, petal-like nanosheets, and nanosheet-assembled flower-like spheres (NSFS) of NiCo MOFs, are confirmed from the structural characterization for ligands BDC, 2-Melm, and BTC, respectively. The basic characterization studies like scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller revealed that the NiCo MOF prepared by using trimesic acid as the ligand (NiCo MOF_BTC) with a long organic linker exhibits a three-dimensional architecture of NSFS that possesses higher surface area and pore dimensions, which enables better ion kinetics. Also, the NiCo MOF_BTC delivered the highest capacity of 1471.4 C g-1 (and 408 mA h g-1) at 1 A g-1 current density, compared to the other prepared NiCo MOFs and already reported different NiCo MOF structures. High interaction of trimesic acid with the metal ions confirmed from ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy leads to a NSFS structure of NiCo MOF_BTC. For practical application, an asymmetric supercapacitor device (NiCo MOF_BTC//AC) is fabricated by taking NiCo MOF_BTC and activated carbon as the positive and negative electrode, respectively, where the PVA + KOH gel electrolyte serves as a separator as well as an electrolyte. The device delivered an outstanding energy density of 78.1 Wh kg-1 at a power density of 750 W kg-1 in an operating potential window of 1.5 V. In addition, it displays a long cycle life of 5000 cycles with only 12% decay of the initial specific capacitance. Therefore, these findings manifest the morphology control of MOFs by using different ligands and the mechanism behind the different morphologies that will provide an effective way to synthesize differently structured MOF materials for future energy-storage applications.
Collapse
Affiliation(s)
- Gopinath Sahoo
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyeon Seo Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
6
|
Aregahegn KZ, Felber T, Tilgner A, Hoffmann EH, Schaefer T, Herrmann H. Kinetics and Mechanisms of Aqueous-Phase Reactions of Triplet-State Imidazole-2-carboxaldehyde and 3,4-Dimethoxybenzaldehyde with α,β-Unsaturated Carbonyl Compounds. J Phys Chem A 2022; 126:8727-8740. [DOI: 10.1021/acs.jpca.2c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kifle Z. Aregahegn
- Department of Chemistry, Debre Berhan University, P.O. Box 445, 1000 Debre Berhan, Ethiopia
| | - Tamara Felber
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Erik H. Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
7
|
Kimura A, Arai T, Ueno M, Oyama K, Yu H, Yamashita S, Otome Y, Taguchi M. Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis. Pharmaceutics 2022; 14:2400. [PMID: 36365217 PMCID: PMC9696042 DOI: 10.3390/pharmaceutics14112400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 08/22/2023] Open
Abstract
Nanoparticle-based drug delivery systems (DDS) have been developed as effective diagnostic and low-dose imaging agents. Nano-imaging agents with particles greater than 100 nm are difficult to accumulate in pancreatic cancer cells, making high-intensity imaging of pancreatic cancer challenging. Peptides composed of histidine and glycine were designed and synthesized. Additionally, aqueous peptide solutions were irradiated with γ-rays to produce peptide nanogels with an average size of 25-53 nm. The mechanisms underlying radiation-mediated peptide crosslinking were investigated by simulating peptide particle formation based on rate constants. The rate constants for reactions between peptides and reactive species produced by water radiolysis were measured using pulse radiolysis. HGGGHGGGH (H9, H-histidine; G-glycine) particles exhibited a smaller size, as well as high formation yield, stability, and biodegradability. These particles were labeled with fluorescent dye to change their negative surface potential and enhance their accumulation in pancreatic cancer cells. Fluorescent-labeled H9 particles accumulated in PANC1 human pancreatic cancer cells, demonstrating that these particles are effective nano-imaging agents for intractable cancers.
Collapse
Affiliation(s)
- Atsushi Kimura
- Takasaki Advanced Radiation Research Institute (TARRI), National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-Machi, Takasaki 370-1207, Gunma, Japan
| | - Tadashi Arai
- Takasaki Advanced Radiation Research Institute (TARRI), National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-Machi, Takasaki 370-1207, Gunma, Japan
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjintyo, Kiryu 376-8515, Gunma, Japan
| | - Miho Ueno
- Takasaki Advanced Radiation Research Institute (TARRI), National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-Machi, Takasaki 370-1207, Gunma, Japan
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjintyo, Kiryu 376-8515, Gunma, Japan
| | - Kotaro Oyama
- Takasaki Advanced Radiation Research Institute (TARRI), National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-Machi, Takasaki 370-1207, Gunma, Japan
| | - Hao Yu
- Takasaki Advanced Radiation Research Institute (TARRI), National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-Machi, Takasaki 370-1207, Gunma, Japan
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun 319-1188, Ibaraki, Japan
| | - Shinichi Yamashita
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun 319-1188, Ibaraki, Japan
| | - Yudai Otome
- Takasaki Advanced Radiation Research Institute (TARRI), National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-Machi, Takasaki 370-1207, Gunma, Japan
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjintyo, Kiryu 376-8515, Gunma, Japan
| | - Mitsumasa Taguchi
- Takasaki Advanced Radiation Research Institute (TARRI), National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-Machi, Takasaki 370-1207, Gunma, Japan
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjintyo, Kiryu 376-8515, Gunma, Japan
| |
Collapse
|
8
|
Wen L, Schaefer T, Zhang Y, He L, Ventura ON, Herrmann H. T- and pH-dependent OH radical reaction kinetics with glycine, alanine, serine, and threonine in the aqueous phase. Phys Chem Chem Phys 2022; 24:11054-11065. [PMID: 35471651 DOI: 10.1039/d1cp05186e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycine, alanine, serine, and threonine are essential amino acids originating from biological activities. These substances can be emitted into the atmosphere directly. In the present study, the aqueous phase reaction kinetics of hydroxyl radicals (˙OH) with the four amino acids is investigated using the competition kinetics method under controlled temperature and pH conditions. The following T-dependent Arrhenius expressions are derived for the ˙OH reactions with glycine, k(T, H2A+) = (9.1 ± 0.3) × 109 × exp[(-2360 ± 230 K)/T], k(T, HA±) = (1.3 ± 0.1) × 1010 × exp[(-2040 ± 240 K)/T]; alanine, k(T, H2A+) = (1.4 ± 0.1) × 109 × exp[(-1120 ± 320 K)/T], k(T, HA±) = (5.5 ± 0.2) × 109 × exp[(-1300 ± 200 K)/T]; serine, k(T, H2A+) = (1.1 ± 0.1) × 109 × exp[(-470 ± 150 K)/T], k(T, HA±) = (3.9 ± 0.1) × 109 × exp[(-720 ± 130 K)/T]; and threonine, k(T, H2A+) = (5.0 ± 0.1) × 1010 × exp[(-1500 ± 100 K)/T], k(T, HA±) = (3.3 ± 0.1) × 1010 × exp[(-1320 ± 90 K)/T] (in units of L mol-1 s-1). The energy barriers of the ˙OH-induced H atom abstractions were simulated by the density functional theory (DFT) calculation performed with GAUSSIAN using the method of M06-2X and the basis set of 6-311++G(3df,2p). According to the calculation results, the -COOH and -NH3+ groups with strong negative inductive effects increase the energy barriers and thus decrease the ˙OH reaction rate constants. In contrast, the presence of a -OH or -CH3 group with weak negative or positive inductive effects can reduce energy barriers and hence increase the ˙OH reaction rate constants. To improve the previous structure-activity relationship, the contribution factors of -NH3+ at Cα-atom and Cβ-atom are determined as 0.07 and 0.15, respectively. Aqueous phase ˙OH oxidation acts as an important sink of the amino acids in the atmosphere, and can be accurately described by the obtained Arrhenius expressions under atmospheric conditions.
Collapse
Affiliation(s)
- Liang Wen
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany.
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany.
| | - Yimu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lin He
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany.
| | - Oscar N Ventura
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany. .,Computational Chemistry and Biology Group, CCBG, DETEMA, Facultad de Química, Universidad de la República, 11400 Montevideo, Uruguay
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany. .,School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Martins-Costa MTC, Anglada JM, Francisco JS, Ruiz-López MF. Photosensitization mechanisms at the air-water interface of aqueous aerosols. Chem Sci 2022; 13:2624-2631. [PMID: 35340860 PMCID: PMC8890110 DOI: 10.1039/d1sc06866k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/04/2022] [Indexed: 11/24/2022] Open
Abstract
Photosensitization reactions are believed to provide a key contribution to the overall oxidation chemistry of the Earth's atmosphere. Generally, these processes take place on the surface of aqueous aerosols, where organic surfactants accumulate and react, either directly or indirectly, with the activated photosensitizer. However, the mechanisms involved in these important interfacial phenomena are still poorly known. This work sheds light on the reaction mechanisms of the photosensitizer imidazole-2-carboxaldehyde through ab initio (QM/MM) molecular dynamics simulations and high-level ab initio calculations. The nature of the lowest excited states of the system (singlets and triplets) is described in detail for the first time in the gas phase, in bulk water, and at the air-water interface, and possible intersystem crossing mechanisms leading to the reactive triplet state are analyzed. Moreover, the reactive triplet state is shown to be unstable at the air-water surface in a pure water aerosol. The combination of this finding with the results obtained for simple surfactant-photosensitizer models, together with experimental data from the literature, suggests that photosensitization reactions assisted by imidazole-2-carboxaldehyde at the surface of aqueous droplets can only occur in the presence of surfactant species, such as fatty acids, that stabilize the photoactivated triplet at the interface. These findings should help the interpretation of field measurements and the design of new laboratory experiments to better understand atmospheric photosensitization processes.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS BP 70239 54506 Vandoeuvre-lès-Nancy France
| | - Josep M Anglada
- Departament de Química Biològica IQAC-CSIC c/ Jordi Girona 18 E-08034 Barcelona Spain
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-631 USA
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS BP 70239 54506 Vandoeuvre-lès-Nancy France
| |
Collapse
|
10
|
He C, Wang H, Gong D, Lv S, Wu G, Wang R, Chen Y, Ding Y, Li Y, Wang B. Insights into high concentrations of particle-bound imidazoles in the background atmosphere of southern China: Potential sources and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150804. [PMID: 34653468 DOI: 10.1016/j.scitotenv.2021.150804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Imidazoles are important constituents in atmospheric brown carbon and have gained increasing attention in the past decade. Although imidazoles have been studied widely in laboratories, the sparse field observations severely limit the understanding of imidazole's abundance and sources in the atmosphere. In this study, we measured particle-bound imidazoles and their precursors at a background forest site in the Nanling Mountains of southern China. The average concentration of imidazoles (4.17 ± 3.76 ng/m3) was found to be significantly higher than other background sites worldwide. Further analyses revealed that a majority of imidazoles (59.1%) at the site originated from secondary formation through reactions of dicarbonyls (e.g., glyoxal and methylglyoxal) and reduced nitrogen species, with relatively minor contributions from regional transport (32.8%) and biomass burning (8.1%). In addition, the key factors influencing secondary formation of imidazoles, such as relative humidity, water-soluble inorganic ions, and pH, were analyzed. Our results indicated that the secondary formation of imidazoles can be greatly enhanced under high humidity conditions, particularly during fog events. Overall, this study offers valuable insights into potential sources and influencing factors of ambient imidazoles in background atmospheres.
Collapse
Affiliation(s)
- Chunqian He
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China.
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Shaojun Lv
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Gengchen Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China
| | - Ruiwen Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China
| | - Yaqiu Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Yaozhou Ding
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Yanlei Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China.
| |
Collapse
|
11
|
Zhang R, Gen M, Liang Z, Li YJ, Chan CK. Photochemical Reactions of Glyoxal during Particulate Ammonium Nitrate Photolysis: Brown Carbon Formation, Enhanced Glyoxal Decay, and Organic Phase Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1605-1614. [PMID: 35023733 DOI: 10.1021/acs.est.1c07211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glyoxal is an important precursor of aqueous secondary organic aerosol (aqSOA). Its photooxidation to form organic acids and oligomers and reactions with reduced nitrogen compounds to form brown carbon (BrC) have been extensively investigated separately, although these two types of reactions can occur simultaneously during the daytime. Here, we examine the reactions of glyoxal during photooxidation and BrC formation in premixed NH4NO3 + Glyoxal droplets. We find that nitrate photolysis and photosensitization can enhance the decay rates of glyoxal by a factor of ∼5 and ∼6 compared to those under dark, respectively. A significantly enhanced glyoxal decay rate by a factor of ∼12 was observed in the presence of both nitrate photolysis and photosensitization. Furthermore, a new organic phase was formed in irradiated NH4NO3 + Glyoxal droplets, which had no noticeable degradation under prolonged photooxidation. It was attributed to the imidazole oxidation mediated by nitrate photolysis and/or photosensitization. The persistent organic phase suggests the potential to contribute to SOA formation in ambient fine particles. This study highlights that glyoxal photooxidation mediated by nitrate photolysis and photosensitization can significantly enhance the atmospheric sink of glyoxal, which may partially narrow the gap between model predictions and field measurements of ambient glyoxal concentrations.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Zhancong Liang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Chak Keung Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
12
|
Tilgner A, Schaefer T, Alexander B, Barth M, Collett JL, Fahey KM, Nenes A, Pye HOT, Herrmann H, McNeill VF. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:10.5194/acp-21-13483-2021. [PMID: 34675968 PMCID: PMC8525431 DOI: 10.5194/acp-21-13483-2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.
Collapse
Affiliation(s)
- Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA 98195, USA
| | - Mary Barth
- Atmospheric Chemistry Observation & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
13
|
Felber T, Schaefer T, He L, Herrmann H. Aromatic Carbonyl and Nitro Compounds as Photosensitizers and Their Photophysical Properties in the Tropospheric Aqueous Phase. J Phys Chem A 2021; 125:5078-5095. [PMID: 34096724 DOI: 10.1021/acs.jpca.1c03503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary organic aerosol formation in the atmospheric aqueous/particulate phase by photosensitized reactions is currently subject to uncertainties. To understand the impact of photosensitized reactions, photophysical and -chemical properties of photosensitizers, kinetic data, and reaction mechanisms of these processes are required. The photophysical properties of acetophenones, benzaldehydes, benzophenones, and naphthalenes were investigated in aqueous solution using laser flash excitation. Quantum yields of excited photosensitizers were determined giving values between 0.06-0.80 at 298 K and pH = 5. Molar absorption coefficients (εmax(3PS*) = (0.8-13) × 104 L mol-1 cm-1), decay rate constants in water (k1st = (9.4 ± 0.5) × 102 to (2.2 ± 0.1) × 105 s-1), and quenching rate constants with oxygen (kq(O2) = (1.7 ± 0.1-4.4 ± 0.4) × 109 L mol-1 s-1) of the excited triplet states were determined at 298 K and pH = 5. Photosensitized reactions of carboxylic acids and alkenes show second-order rate constants in the range of (37 ± 7.0-0.55 ± 0.1) × 104 and (27 ± 5.0-0.04 ± 0.01) × 108 L mol-1 s-1. The results show that different compound classes act differently as a photosensitizer and can be a sink for certain organic compounds in the atmospheric aqueous phase.
Collapse
Affiliation(s)
- Tamara Felber
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Lin He
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
14
|
Felber T, Schaefer T, Herrmann H. Five-Membered Heterocycles as Potential Photosensitizers in the Tropospheric Aqueous Phase: Photophysical Properties of Imidazole-2-carboxaldehyde, 2-Furaldehyde, and 2-Acetylfuran. J Phys Chem A 2020; 124:10029-10039. [PMID: 33202138 DOI: 10.1021/acs.jpca.0c07028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosensitized reactions of organic compounds in the atmospheric aqueous and particle phase might be potential sources for secondary organic aerosol (SOA) formation, addressed as aqueous SOA. However, data regarding the photophysical properties of photosensitizers, their kinetics, as well as reaction mechanisms of such processes in the aqueous/particle phase are scarce. The present study investigates the determination of the photophysical properties of imidazole-2-carboxaldehyde, 2-furaldehyde, and 2-acetylfuran as potential photosensitizers using laser flash excitation in aqueous solution. Quantum yields of the formation of the excited photosensitizers were obtained by a scavenging method with thiocyanate, resulting in values between 0.86 and 0.96 at 298 K and pH = 5. The time-resolved absorbance spectra of the excited photosensitizers were measured, and their molar attenuation coefficients were determined ranging between (0.30 and 1.4) × 104 L mol-1 cm-1 at their absorbance maxima (λmax = 335-440 nm). Additionally, the excited photosensitizers are quenched by water and molecular oxygen, resulting in quenching rate constants of k1st = (1.0 ± 0.2-1.8 ± 0.2) × 105 s-1 and kq(O2) = (2.1 ± 0.2-2.7 ± 0.2) × 109 L mol-1 s-1, respectively.
Collapse
Affiliation(s)
- Tamara Felber
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
15
|
Yang H, Bi Y, Wang M, Chen C, Xu Z, Chen K, Zhou Y, Zhang J, Niu QJ. β-FeOOH self-supporting electrode for efficient electrochemical anodic oxidation process. CHEMOSPHERE 2020; 261:127674. [PMID: 32758926 DOI: 10.1016/j.chemosphere.2020.127674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
In this work, β-FeOOH was synthesized and grown on carbon paper with the assistance of dopamine (PDA) via a facile hydrothermal method, producing β-FeOOH self-supporting electrode eventually. Electrochemical anodic oxidation performance to methyl orange (MO) solution using β-FeOOH anode was investigated and the major influencing factors such as current density, initial pH value and initial MO concentration on MO degradation efficiency were further explored. Experimental results suggested that 99.4% degradation rate of MO could be achieved only after 25 min electrolysis, its pseudo first-order reaction kinetic constant was 11.3 ⅹ 10-2 min-1 and the COD removal ratio was 37.3% after 120 min electrolysis under optimized conditions: current density was 10 mA cm-2, initial pH value was 3 and initial MO concentration was 10 mg L-1. At the same time, β-FeOOH electrode also exhibited a high cycling stability and the MO removal ratio was still keeping at 84.9% after eight cycles. Moreover, this electrode showed efficient decomposition performance to multiple simulated pollutants, indicating the well potential practical application values of β-FeOOH electrode. At last, the proposed degradation mechanism of MO was evaluated according to the analyzing results of UV-vis and HPLC-MS to MO solution under different degradation durations.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Yanfei Bi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Ming Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Chen Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Zewen Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China.
| | - Jun Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Q Jason Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China.
| |
Collapse
|
16
|
Tong D, Chen J, Qin D, Ji Y, Li G, An T. Mechanism of atmospheric organic amines reacted with ozone and implications for the formation of secondary organic aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139830. [PMID: 32526582 DOI: 10.1016/j.scitotenv.2020.139830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Organic amines are one of the most important nitrogen-containing compounds in the atmosphere, and their reactions with tropospheric ozone contribute significantly to the formation of secondary organic aerosols (SOA). However, the chemical pathways of their reaction with atmospheric ozone are poorly understood. This study investigates the atmospheric ozonolysis mechanism of two typical organic amines-diethylamine and triethylamine using experimental and theoretical methods. Intermediate results from GC-MS and PTR-TOF-MS analysis confirm the formation of eight and eleven nitrogen- and oxygen-containing products during the ozonolysis of diethylamine and triethylamine, respectively. N-ethylethanimine (56.5% in average) or acetaldehyde (64.9% in average) is formed as the dominant product from the ozonolysis of each organic amine. Ozonolysis pathway results indicate that the conversion to N-ethylethanimine is the dominant pathway for diethylamine ozonolysis. At the same time, triethylamine prefers the initial transformation to diethylamine with the discharge of acetaldehyde and then converts to N-ethylethanimine. Higher SOA mass concentration is obtained from the ozonolysis of triethylamine than diethylamine, probably because the former releases a larger amount of intermediate products, especially acetaldehyde. Our results provide a deep insight into the atmospheric processing of organic amines via ozonolysis and the implications of this mechanism for SOA formation.
Collapse
Affiliation(s)
- Dan Tong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dandan Qin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
17
|
Chen Y, Li N, Li X, Tao Y, Luo S, Zhao Z, Ma S, Huang H, Chen Y, Ye Z, Ge X. Secondary organic aerosol formation from 3C ⁎-initiated oxidation of 4-ethylguaiacol in atmospheric aqueous-phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137953. [PMID: 32213404 DOI: 10.1016/j.scitotenv.2020.137953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, we investigated aqueous-phase triplet excited states (3C⁎)-induced photo-degradation of 4-ethylguaiacol (EG) under both simulated sunlight and ultraviolet (UV) light irradiations. Through quencher experiments, the relative contributions of reactive oxygen species (ROS, such as 1O2/O2-/·OH) and 3C⁎ were calculated and results showed three reactive species, e.g., 3C⁎, 1O2 and O2-, all seemed to play important roles in the photo-degradation of EG, but contribution from ·OH was relatively minor. High steady-state 1O2 concentration after 1 h irradiation further revealed the major contribution of 1O2 to photo-degradation under Xe light irradiation. The degradation experiment under three saturated gases (air, O2 and N2) showed that the degradation rate in air-saturated condition was the largest owing to synergistic effect of 1O2 and 3C⁎. Oxidative capacity of aqueous secondary organic aerosol (aqSOA) increased with reaction time by monitoring oxygen-to‑carbon (O/C) ratio and carbon oxidation state (OSc) via an aerodyne soot particle aerosol mass spectrometer (SP-AMS). Moreover, aqSOA mass yields were calculated via SP-AMS data. The UV-vis spectral change suggested formation of light-absorbing organics at first stage under simulated sunlight irradiation. Based on the identified products and the reactive intermediates, we postulated that 3C⁎-induced oxidation might be attributed to direct reactions by 3C⁎ and 1O2, chemical reaction by ROS, as well as oligomerization via H-abstraction. To the best of our knowledge, this is the first time to explore systematically reaction pathways of 4-ethylguaiacol under 3C∗ radical on the basis of thorough analysis of products and reactive species. Our findings highlight the impacts of aqSOA from biomass burning emissions on air quality and climate change.
Collapse
Affiliation(s)
- Yantong Chen
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Nanwang Li
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xudong Li
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Ye Tao
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shipeng Luo
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Zhuzi Zhao
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shuaishuai Ma
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hongying Huang
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yanfang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaolian Ye
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|