1
|
An NT, Vu Thi N, Trung NT. Profound importance of the conventional O-H⋯O hydrogen bond versus a considerable blue shift of the C sp2-H bond in complexes of substituted carbonyls and carboxyls. Phys Chem Chem Phys 2024; 26:22775-22789. [PMID: 39162235 DOI: 10.1039/d4cp00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Using quantum chemical approaches, we investigated the conventional O-H⋯O and nonconventional Csp2-H⋯O hydrogen bonds between carboxylic acids and aldehydes in 21 stable complexes. The strength of complexes is determined by the conventional O-H⋯O bond together with the nonconventional Csp2-H⋯O hydrogen bond, in which the former one is 4-5 times as strong as the latter one. Proportional linear correlations of the interaction energy with both individual energies of the O-H⋯O and Csp2-H⋯O hydrogen bonds are proposed. Different impacts of electron-donating and electron-withdrawing groups in substituted formaldehyde and formic acid on characteristics of conventional and nonconventional hydrogen bonds, as well as the strength of both hydrogen bond types and complexes, are also evaluated. Following complexation, it is noteworthy that the largest blue shift of the Csp2-H stretching frequency in the Csp2-H⋯O bond up to 105.3 cm-1 in CH3CHO⋯FCOOH is due to a decisive role of the O-H⋯O hydrogen bond, which has been rarely reported in the literature. The obtained results show that the conventional O-H⋯O hydrogen bond plays a pivotal role in the significant blue shift of the Csp2-H stretching frequency in the nonconventional Csp2-H⋯O hydrogen bond. Remarkably, the considerable blue shift of the Csp2-H stretching frequency is found to be one H of C-H in formic acid substituted by the electron-withdrawing group and one H in formaldehyde substituted by the electron-donating group. In addition, the change in the Csp2-H stretching frequency following complexation is proportional to both changes of electron density in σ*(Csp2-H) and σ*(O-H) orbitals, in which a dominant role of σ*(O-H) versus σ*(Csp2-H) is observed.
Collapse
Affiliation(s)
- Nguyen Truong An
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 18223 Prague 8, Czech Republic
| | - Ngan Vu Thi
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
| |
Collapse
|
2
|
An NT, Duong NT, Tri NN, Trung NT. Role of O-H⋯O/S conventional hydrogen bonds in considerable C sp2 -H blue-shift in the binary systems of acetaldehyde and thioacetaldehyde with substituted carboxylic and thiocarboxylic acids. RSC Adv 2022; 12:35309-35319. [PMID: 36540253 PMCID: PMC9732747 DOI: 10.1039/d2ra05391h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/27/2022] [Indexed: 09/10/2024] Open
Abstract
Stable binary complexes of RCZOH⋯CH3CHZ (R = CH3, H, F; Z = O, S) are due to contributions from the O-H⋯O/S and Csp2 -H⋯O/S hydrogen bonds. The strength of Csp2 /O-H⋯O is 1.5 to 2 times greater than that of the Csp2 /O-H⋯S bond. The substitution of H(Csp2 ) of HCZOH by CH3 causes a decrease in complex stability, while the opposite trend occurs for the F atom. A very large red shift of the O-H stretching frequency in O-H⋯O/S bonds was observed. A surprising Csp2 -H blue shift up to 104.5 cm-1 was observed for the first time. It is found that the presence of O-H⋯O/S hydrogen bonds and a decisive role of intramolecular hyperconjugation interactions in the complex cause a significant blue shift of the Csp2 -H covalent bonds. A striking role of O compared to the S atom in determining the blue shift of Csp2 -H stretching vibration and stability of binary complexes is proposed. The obtained results show that the ratio of deprotonation enthalpy and proton affinity could be considered as an index for the classification of the non-conventional hydrogen bond. SAPT2+ results show that the strength of RCSOH⋯CH3CHS complexes is dominated by electrostatic and induction energies, while a larger contribution to the stability of remaining complexes is detected for the electrostatic component.
Collapse
Affiliation(s)
- Nguyen Truong An
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon Vietnam
| | - Nguyen Thi Duong
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon Vietnam
| | - Nguyen Ngoc Tri
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon Vietnam
- Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University Quy Nhon Vietnam
| | - Nguyen Tien Trung
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon Vietnam
- Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University Quy Nhon Vietnam
| |
Collapse
|
3
|
A spectroscopic method for monitoring photochemical reactions in the gas phase. MethodsX 2022; 9:101847. [PMID: 36160107 PMCID: PMC9494228 DOI: 10.1016/j.mex.2022.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
We have developed an infrared spectroscopic method for monitoring photochemical reactions in the gas phase. This method is based on the major components such as repetitive scan FT-IR spectrometer, multi-pass long-path gas cell, and Nd:YAG laser (ns). The FT-IR spectrometer was used as it is. The gas cell was further modified for the photolysis of the precursor. The vacuum line was designed and constructed solely in our laboratory. We make optical arrangements for both separation of fourth-harmonics (266 nm) from the fundamental (1064 nm) of Nd:YAG laser as well as to guide the UV light to the gas cell housed in the sample compartment of FT-IR. A special arrangement was done in order to get a multi-pass of UV light across the gas cell so that photolysis efficiency will increase significantly. We estimate the photolysis efficiency based on laser power, optical path-length of the laser light, vapor pressure of the precursor, and its absorption cross-section. Furthermore, we have done quantitative analysis for the precursor and photo-products using infrared absorbance and optical path length. This method is tested and validated by monitoring the photodegradation pathways of halobenzenes in the UV light.Repetitive scan FT-IR spectrometer coupled with a multi-pass long-path gas cell and Nd:YAG laser. Estimate photolysis efficiency of precursor and concentration of photoproducts. Monitoring gaseous phase photochemical reactions up-to 100 of ms with spectral resolution 2 cm−1 is possible with this system.
Collapse
|
4
|
Oram BK, Monu, Bandyopadhyay B. Impact of donor acidity on ν C≡N and ν O–H spectral shifts in O-H···N≡C H-bonded complexes between nitriles and alcohols: a combined IR spectroscopic and quantum chemical investigation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2061387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Binod Kumar Oram
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Monu
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Biman Bandyopadhyay
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| |
Collapse
|
5
|
Cuc NTT, An NT, Ngan VT, Chandra AK, Trung NT. Importance of water and intramolecular interaction governs substantial blue shift of Csp2–H stretching frequency in complexes between chalcogenoaldehydes and water. RSC Adv 2022; 12:1998-2008. [PMID: 35425273 PMCID: PMC8979115 DOI: 10.1039/d1ra07444j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
Geometrical structure, stability and cooperativity, and contribution of hydrogen bonds to the stability of complexes between chalcogenoaldehydes and water were thoroughly investigated using quantum chemical methods. The stability of the complexes increases significantly when one or more H2O molecules are added to the binary system, whereas it decreases sharply going from O to S, Se, or Te substitution. The O–H⋯O H-bond is twice as stable as Csp2–H⋯O and O–H⋯S/Se/Te H-bonds. It is found that a considerable blue-shift of Csp2–H stretching frequency in the Csp2–H⋯O H-bond is mainly determined by an addition of water into the complexes along with the low polarity of the Csp2–H covalent bond in formaldehyde and acetaldehyde. The Csp2–H stretching frequency shift as a function of net second hyperconjugative energy for the σ*(Csp2–H) antibonding orbital is observed. Remarkably, a considerable Csp2–H blue shift of 109 cm−1 has been reported for the first time. Upon the addition of H2O into the binary systems, halogenated complexes witness a decreasing magnitude of the Csp2–H stretching frequency blue-shift in the Csp2–H⋯O H-bond, whereas CH3-substituted complexes experience the opposite trend. The considerable blue shift of Csp2–H stretching frequency.![]()
Collapse
Affiliation(s)
- Nguyen Thi Thanh Cuc
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, Vietnam
| | - Nguyen Truong An
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, Vietnam
| | - Vu Thi Ngan
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, Vietnam
| | - Asit. K. Chandra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, Vietnam
| |
Collapse
|
6
|
Pal D, Chakraborty A, Chakraborty S. Investigation of [CHCl3-CH3OH] complex using matrix-isolation IR spectroscopy and quantum chemical calculation: Evidence of hydrogen- and halogen-bonding interaction. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Cuc NTT, Phan CTD, Nhung NTA, Nguyen MT, Trung NT, Ngan VT. Theoretical Aspects of Nonconventional Hydrogen Bonds in the Complexes of Aldehydes and Hydrogen Chalcogenides. J Phys Chem A 2021; 125:10291-10302. [PMID: 34818019 DOI: 10.1021/acs.jpca.1c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen bonds (H-bonds) in the complexes between aldehydes and hydrogen chalcogenides, XCHO...nH2Z with X = H, F, Cl, Br, and CH3, Z = O, S, Se, and Te, and n = 1,2, were investigated using high-level ab initio calculations. The Csp2-H...O H-bonds are found to be about twice as strong as the Csp2-H...S/Se/Te counterparts. Remarkably, the S/Se/Te-H...S/Se/Te H-bonds are 4.5 times as weak as the O-H...O ones. The addition of the second H2Z molecule into binary systems induces stronger complexes and causes a positive cooperative effect in ternary complexes. The blue shift of Csp2-H stretching frequency involving the Csp2-H...Z H-bond sharply increases when replacing one H atom in HCHO by a CH3 group. In contrast, when one H atom in HCHO is substituted with a halogen, the magnitude of blue-shifting of the Csp2-H...Z H-bond becomes smaller. The largest blue shift up to 92 cm-1 of Csp2-H stretching frequency in Csp2-H...O H-bond in CH3CHO...2H2O has rarely been observed and is much greater than that in the cases of the Csp2-H...S/Se/Te ones. The Csp2-H blue shift of Csp2-H...Z bonds in the halogenated aldehydes is converted into a red shift when H2O is replaced by a heavier analogue, such as H2S, H2Se, or H2Te. The stability and classification of nonconventional H-bonds including Csp2-H...Se/Te, Te-H...Te, and Se/Te-H...O have been established for the first time.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Cuc
- Laboratory of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 55100, Vietnam
| | - Cam-Tu Dang Phan
- Laboratory of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 55100, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue 49000, Vietnam
| | | | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 55100, Vietnam
| | - Vu Thi Ngan
- Laboratory of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 55100, Vietnam
| |
Collapse
|
8
|
Behera B, Das P. HCl elimination in the photolysis of chlorobenzene at 266 nm: An FT-IR spectroscopy and quantum chemical study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Kumar N, Saha S, Sastry GN. Towards developing a criterion to characterize non-covalent bonds: a quantum mechanical study. Phys Chem Chem Phys 2021; 23:8478-8488. [DOI: 10.1039/d0cp05689h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemical bonds are central to chemistry, biology, and allied fields, but still, the criterion to characterize an interaction as a non-covalent bond has not been studied rigorously.
Collapse
Affiliation(s)
- Nandan Kumar
- Centre for Molecular Modeling
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Soumen Saha
- Centre for Molecular Modeling
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Nagoya University
| | - G. Narahari Sastry
- Centre for Molecular Modeling
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
10
|
Inafuku M, Marceca E. Carbonyl stretch of CH⋯O hydrogen-bonded methyl acetate in supercritical trifluoromethane. J Chem Phys 2020; 153:084502. [PMID: 32872872 DOI: 10.1063/5.0019058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infrared spectroscopy in the gas phase was used to study the formation reaction of the CH⋯O hydrogen bonding complex involving the CH group of trifluoromethane, as a hydrogen donor, and the carbonyl group of methyl acetate, as a hydrogen acceptor, under different (T, p) conditions. The hydrogen-bonded carbonyl stretch of the molecular pair was monitored in dilute mixtures of methyl acetate in trifluoromethane at near-critical temperatures, from gas- to liquid-like densities. In the gas region, it was possible to discriminate the carbonyl signal of the hydrogen-bonded complex from that of the free ester and have access to their relative concentration. The equilibrium constant of the hydrogen bonding reaction and the standard enthalpy and entropy changes in the process were determined using the spectroscopic data. CH⋯O bonding was favored by lowering temperature or pressurizing F3CH in the mixture, remaining essentially no free carbonyl groups about the critical density. The carbonyl band of the hydrogen-bonded pair appeared as a single symmetric peak up to liquid-like densities, suggesting that the 1:1 methyl acetate-trifluoromethane complex has the most abundant stoichiometry. Spectral features as frequency shift and bandwidth of the hydrogen-bonded carbonyl were studied as a function of temperature and solvent-density. A bathochromic (red) vibrational shift was registered for the bound carbonyl band against density, with a sudden change in behavior in the near-critical region, while the width of this band remains mostly unresponsive.
Collapse
Affiliation(s)
- Maximiliano Inafuku
- Department of Inorganic, Analytical and Physical Chemistry-FCEN, University of Buenos Aires and INQUIMAE-CONICET, Ciudad Universitaria, Pab. II, Buenos Aires C1428EGA, Argentina
| | - Ernesto Marceca
- Department of Inorganic, Analytical and Physical Chemistry-FCEN, University of Buenos Aires and INQUIMAE-CONICET, Ciudad Universitaria, Pab. II, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
11
|
Bhattacharya I, Sadhukhan J, Biswas S, Chakraborty T. Medium-Dependent Crossover from the Red to Blue Shift of the Donor’s Stretching Fundamental in the Binary Hydrogen-Bonded Complexes of CDCl3 with Ethers and Ketones. J Phys Chem A 2020; 124:7259-7270. [DOI: 10.1021/acs.jpca.0c03946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Indrani Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Jayshree Sadhukhan
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, Govt. General Degree College, Singur, Hooghly 712409, West Bengal, India
| | - Souvick Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
An ab initio study of some hydrogen-bonded complexes of chloroform and bromoform: red-shifted or blue-shifted hydrogen bonds? Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02625-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Mao Y, Head-Gordon M. Probing Blue-Shifting Hydrogen Bonds with Adiabatic Energy Decomposition Analysis. J Phys Chem Lett 2019; 10:3899-3905. [PMID: 31241961 DOI: 10.1021/acs.jpclett.9b01203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The physical origin of blue-shifting hydrogen bonds remains a subject of debate, although many plausible explanations have been proposed. Using a molecular property decomposition analysis based on absolutely localized molecular orbitals, we investigated several representative F3CH···Y (Y = H2O, NH3, Cl-) complexes. We reveal that features of a blue-shifting H-bond already appear on the frozen surface where both polarization and charge transfer (CT) are "turned off", and that the final frequency shift observed depends on the strength of CT. Further decomposition of forces at the frozen level shows that Pauli repulsion is the only component that shortens the C-H bond in the short-range, while both permanent electrostatics and dispersion lengthen the bond. The effects of these forces from the medium to long-range are also discussed. Our analysis provides a complete picture for blue-shifting H-bonds and suggests two necessary conditions for their features to be observed at equilibrium structures: (i) stronger Pauli repulsion than the combination of electrostatic and dispersion forces; (ii) relatively weak CT that is insufficient to compensate for the blue-shifting effect of the frozen interaction.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
15
|
Chandra S, Ansari IN, Dixit G, Lepine F, Bhattacharya A. Experimental Evidence of Sensitivity of the High Harmonic Generation to Hydrogen Bonding. J Phys Chem A 2019; 123:5144-5149. [DOI: 10.1021/acs.jpca.9b03295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sankhabrata Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Irfana N. Ansari
- Department of Physics, Indian Institute of Technology, Bombay 400076, India
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology, Bombay 400076, India
| | - Franck Lepine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Atanu Bhattacharya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|