1
|
Li Z, Hernández FJ, Salguero C, Lopez SA, Crespo-Otero R, Li J. Machine learning photodynamics decode multiple singlet fission channels in pentacene crystal. Nat Commun 2025; 16:1194. [PMID: 39885157 PMCID: PMC11782655 DOI: 10.1038/s41467-025-56480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Crystalline pentacene is a model solid-state light-harvesting material because its quantum efficiencies exceed 100% via ultrafast singlet fission. The singlet fission mechanism in pentacene crystals is disputed due to insufficient electronic information in time-resolved experiments and intractable quantum mechanical calculations for simulating realistic crystal dynamics. Here we combine a multiscale multiconfigurational approach and machine learning photodynamics to understand competing singlet fission mechanisms in crystalline pentacene. Our simulations reveal coexisting charge-transfer-mediated and coherent mechanisms via the competing channels in the herringbone and parallel dimers. The predicted singlet fission time constants (61 and 33 fs) are in excellent agreement with experiments (78 and 35 fs). The trajectories highlight the essential role of intermolecular stretching between monomers in generating the multi-exciton state and explain the anisotropic phenomenon. The machine-learning-photodynamics resolved the elusive interplay between electronic structure and vibrational relations, enabling fully atomistic excited-state dynamics with multiconfigurational quantum mechanical quality for crystalline pentacene.
Collapse
Affiliation(s)
- Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China
| | | | - Christian Salguero
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | | | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
Muralidharan A, Subramani M, Subramani D, Ramasamy S. Inquest for the interaction of canonical and non-canonical DNA/RNA bases with ternary based 2D Si 2BN and doped Si 2BN for biosensing applications. J Biomol Struct Dyn 2023; 42:12446-12477. [PMID: 37855316 DOI: 10.1080/07391102.2023.2270685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Density functional theory (DFT) is invoked to investigate the interaction between the canonical (CN) and non-canonical (NC) bases with pristine Si2BN (Si2BN) and Phosphorous-doped Si2BN (P-dop-Si2BN) sheets. Inquest for the better sensing substrate is decided through the adsorption energy calculation which reveals that doping of phosphorous atom enhances the adsorption strength of AT (-83.74 kcal/mol) AU (-82.77 kcal/mol) and GC (-96.36 kcal/mol) base pairs. The CN and NC bases have higher adsorption energy than the previous reported values which concludes that the P-dop-Si2BN sheet will be optimal substrate to sense the bases. Meanwhile, the selected CN and NC (except hypoxanthine) bases interact with sheet in parallel manner which infers the π-π interaction with Si2BN and P-dop-Si2BN sheets. The energy gap variation (ΔEg%) of the P-dop-Si2BN complexes has a noticeable change, ranging from -24.75 to -197.28% which thrust the sensitivity of the P-dop-Si2BN sheet over the detection of CN and NC bases. The natural population analysis (NPA) and electron density difference map (EDDM) confirms that charges are transferred from CN and NC bases to Si2BN and P-dop-Si2BN sheet. The optical property of the P-dop-Si2BN complexes reveals that the noticeable red and blue shift in the visible and near-infrared regions (778 nm to 1143 nm) has been observed. Therefore, the above results conclude that the P-dop-Si2BN sheet plays a potential candidate to detect the CN and NC bases which contribute to the development of biosensors and DNA/RNA sequencing devices.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akilesh Muralidharan
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Mohanapriya Subramani
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Divyakaaviri Subramani
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Shankar Ramasamy
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
3
|
Hernández F, Cox JM, Li J, Crespo-Otero R, Lopez SA. Multiconfigurational Calculations and Photodynamics Describe Norbornadiene Photochemistry. J Org Chem 2023; 88:5311-5320. [PMID: 37022327 PMCID: PMC10629221 DOI: 10.1021/acs.joc.2c02758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 04/07/2023]
Abstract
Storing solar energy is a vital component of using renewable energy sources to meet the growing demands of the global energy economy. Molecular solar thermal (MOST) energy storage is a promising means to store solar energy with on-demand energy release. The light-induced isomerization reaction of norbornadiene (NBD) to quadricyclane (QC) is of great interest because of the generally high energy storage density (0.97 MJ kg-1) and long thermal reversion lifetime (t1/2,300K = 8346 years). However, the mechanistic details of the ultrafast excited-state [2 + 2]-cycloaddition are largely unknown due to the limitations of experimental techniques in resolving accurate excited-state molecular structures. We now present a full computational study on the excited-state deactivation mechanism of NBD and its dimethyl dicyano derivative (DMDCNBD) in the gas phase. Our multiconfigurational calculations and nonadiabatic molecular dynamics simulations have enumerated the possible pathways with 557 S2 trajectories of NBD for 500 fs and 492 S1 trajectories of DMDCNBD for 800 fs. The simulations predicted the S2 and S1 lifetimes of NBD (62 and 221 fs, respectively) and the S1 lifetime of DMDCNBD (190 fs). The predicted quantum yields of QC and DCQC are 10 and 43%, respectively. Our simulations also show the mechanisms of forming other possible reaction products and their quantum yields.
Collapse
Affiliation(s)
- Federico
J. Hernández
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jordan M. Cox
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Jingbai Li
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People’s
Republic of China
| | - Rachel Crespo-Otero
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Steven A. Lopez
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Dubey A, Mishra R, Cheng CW, Kuang YP, Gwo S, Yen TJ. Demonstration of a Superior Deep-UV Surface-Enhanced Resonance Raman Scattering (SERRS) Substrate and Single-Base Mutation Detection in Oligonucleotides. J Am Chem Soc 2021; 143:19282-19286. [PMID: 34748330 DOI: 10.1021/jacs.1c09762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In life science, rapid mutation detection in oligonucleotides is in a great demand for genomic and medical screening. To satisfy this demand, surface-enhanced resonance Raman spectroscopy (SERRS) in the deep-UV (DUV) regime offers a promising solution due to its merits of label-free nature, strong electromagnetic confinement, and charge transfer effect. Here, we demonstrate an epitaxial aluminum (Al) DUV-SERRS substrate that resonates effectively with the incident Raman laser and the ss-DNA at 266 nm, yielding significant SERRS signals of the detected analytes. For the first time, to the best of our knowledge, we obtaine SERRS spectra for all bases of oligonucleotides, not only revealing maximum characteristic Raman peaks but also recording the highest enhancement factor of up to 106 for a 1 nm thick adenine monomer. Moreover, our epitaxial Al DUV-SERRS substrate is able to enhance the Raman signal of all four bases of 12-mer ss-DNA and to further linearly quantify the single-base mutation in the 12-mer ss-DNA.
Collapse
Affiliation(s)
- Abhishek Dubey
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ragini Mishra
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chang-Wei Cheng
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ping Kuang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shangjr Gwo
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan.,Research Centre for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
Herperger KR, Krumland J, Cocchi C. Laser-Induced Electronic and Vibronic Dynamics in the Pyrene Molecule and Its Cation. J Phys Chem A 2021; 125:9619-9631. [PMID: 34714646 DOI: 10.1021/acs.jpca.1c06538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Among polycyclic aromatic hydrocarbons, pyrene is widely used as an optical probe thanks to its peculiar ultraviolet absorption and infrared emission features. Interestingly, this molecule is also an abundant component of the interstellar medium, where it is detected via its unique spectral fingerprints. In this work, we present a comprehensive first-principles study on the electronic and vibrational response of pyrene and its cation to ultrafast, coherent pulses in resonance with their optically active excitations in the ultraviolet region. The analysis of molecular symmetries, electronic structure, and linear optical spectra is used to interpret transient absorption spectra and kinetic energy spectral densities computed for the systems excited by ultrashort laser fields. By disentangling the effects of the electronic and vibrational dynamics via ad hoc simulations with stationary and moving ions, and, in specific cases, with the aid of auxiliary model systems, we rationalize that the nuclear motion is mainly harmonic in the neutral species, while strong anharmonic oscillations emerge in the cation, driven by electronic coherence. Our results provide additional insights into the ultrafast vibronic dynamics of pyrene and related compounds and set the stage for future investigations on more complex carbon-conjugated molecules.
Collapse
Affiliation(s)
- Katherine R Herperger
- Department of Physics, University of Ottawa, Ottawa ON K1N 6N5, Canada.,Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Jannis Krumland
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Caterina Cocchi
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.,Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
6
|
Domínguez-Castro A, Lien-Medrano CR, Maghrebi K, Messaoudi S, Frauenheim T, Fihey A. Photoinduced charge-transfer in chromophore-labeled gold nanoclusters: quantum evidence of the critical role of ligands and vibronic couplings. NANOSCALE 2021; 13:6786-6797. [PMID: 33690747 DOI: 10.1039/d1nr00213a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The electron flow between a metallic aggregate and an organic molecule after excitation with light is a crucial step on which hybrid photovoltaic nanomaterials are based. So far, designing such devices with the help of theoretical approaches has been heavily limited by the computational cost of quantum dynamics models able to track the evolution of the excited states over time. In this article, we present the first application of the time-dependent density functional tight-binding (TD-DFTB) method for an experimental nanometer-sized gold-organic system consisting of a hexyl-protected Au25 cluster labelled with a pyrene fluorophore, in which the fluorescence quenching of the pyrene is attributed to the electron transfer from the metallic cluster to the dye. The full quantum rationalization of the electron transfer is attained through quantum dynamics simulations, highlighting the crucial role of the protecting ligand shell in electron transfer, as well as the coupling with nuclear movement. This work paves the way towards the fast and accurate theoretical design of optoelectronic nanodevices.
Collapse
|
7
|
Bonafé FP, Aradi B, Hourahine B, Medrano CR, Hernández FJ, Frauenheim T, Sánchez CG. A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations. J Chem Theory Comput 2020; 16:4454-4469. [DOI: 10.1021/acs.jctc.9b01217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Franco P. Bonafé
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
| | - Ben Hourahine
- SUPA, Department of Physics, John Anderson Building, The University of Strathclyde, 107 Rottenrow, Glasgow G15 6QN, United Kingdom
| | - Carlos R. Medrano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Federico J. Hernández
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
- Department of Physics, Universidad de Santiago de Chile, Av. Ecuador 3493, Santiago, Chile
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
- Computational Science Research Center (CSRC) Beijing and Computational Science and Applied Research (CSAR) Institute, Shenzhen, China
| | - Cristián G. Sánchez
- Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
8
|
Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye MY, Dumitrică T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz JJ, Köhler C, Kowalczyk T, Kubař T, Lee IS, Lutsker V, Maurer RJ, Min SK, Mitchell I, Negre C, Niehaus TA, Niklasson AMN, Page AJ, Pecchia A, Penazzi G, Persson MP, Řezáč J, Sánchez CG, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu VWZ, Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J Chem Phys 2020; 152:124101. [PMID: 32241125 DOI: 10.1063/1.5143190] [Citation(s) in RCA: 454] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green's functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives.
Collapse
Affiliation(s)
- B Hourahine
- SUPA, Department of Physics, The University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - B Aradi
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - V Blum
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - F Bonafé
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - A Buccheri
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - C Camacho
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| | - C Cevallos
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| | - M Y Deshaye
- Department of Chemistry and Advanced Materials Science and Engineering Center, Western Washington University, Bellingham, Washington 98225, USA
| | - T Dumitrică
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - A Dominguez
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - S Ehlert
- University of Bonn, Bonn, Germany
| | - M Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - T van der Heide
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - J Hermann
- Freie Universität Berlin, Berlin, Germany
| | - S Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J J Kranz
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - C Köhler
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - T Kowalczyk
- Department of Chemistry and Advanced Materials Science and Engineering Center, Western Washington University, Bellingham, Washington 98225, USA
| | - T Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - I S Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - V Lutsker
- Institut I - Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - R J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - S K Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - I Mitchell
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - C Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - T A Niehaus
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - A M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A J Page
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - A Pecchia
- CNR-ISMN, Via Salaria km 29.300, 00015 Monterotondo Stazione, Rome, Italy
| | - G Penazzi
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - M P Persson
- Dassault Systemes, Cambridge, United Kingdom
| | - J Řezáč
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - C G Sánchez
- Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| | - M Sternberg
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M Stöhr
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - F Stuckenberg
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - A Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - V W-Z Yu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - T Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| |
Collapse
|